1. Даны отрезок CD, точка K, не лежащая на отрезке CD, и точка M, лежащая на отрезке CD. Каково взаимное расположение прямой KM и отрезка CD? [2]
2.Найдите углы, образованные при пересечении двух прямых, если один из них
равен 370.
[2]
3. Точки A, B и C расположены на одной прямой, причем AB=6см, BC=24см. Какой может быть длина отрезка AC? Рассмотреть все случаи.
у меня СОЧ по геометрии не пишите ерунду
АN - секкущая АР - её внешняя часть
О - цент окружности
ОК - растояние до секущей
АМ=12
АN= 18
ОК= 3
ОМ=?
для решения воспользуемся без доказательства теоремой о свойствах касательной и секущей проведенной из одной точки:
Теорема
"Произведение всей секущей на её ВНЕШНЮЮ часть равно квадрату касательной"
т.о. АМ*АМ=АМ^2 = AP*AN 12*12 = AP*18 AP=(12*12)/18 =8
PN=AN - AP =18 - 8 = 10
проведем радиусы в точки пересечения секущей ОР и ON
треугольник ОРN - равнобедренный, его высота ОК=3 является также и медианой, т.е. PK=KN=PN / 2 = 10 / 2 = 5
из прямоугольного треугольника OKN по теореме Пифагора определим радиус, он равен гипотенузе треугольника с катетами 3 и 5 см
R = OP = ON = OM = √(5^2 + 3^2) = √(25 + 9) = √34 см ~~ 5,8 см
ответ немного смущает, но видимо это "модификация" преподавателя, для защиты от списывания, наверное цифры у Сканави были другие, если конечно я не ошибся в "расчётах"
ответ: радиус окружности равен √34 см
Сечение цилиндра проходит через хорду АВ в основании, отстоящую от центра окружности на 2 см. ОМ=2 см. АМ=ВМ, М∈АВ, АО=ВО=R.
В прямоугольном тр-ке АОМ АМ=√(АО²-ОМ²)=√(R²-4).
АВ=2АМ=2√(R²-4).
По условию АВ=Н. Объединим оба полученные уравнения высоты.
4√3/R=2√(R²-4), возведём всё в квадрат,
48/R²=4(R²-4),
12=R²(R²-4),
R⁴-4R²-12=0,
R₁²=-2, отрицательное значение не подходит.
R₂²=6.
Н=2√(6-4)=2√2 см.
Площадь искомого сечения равна: S=H²=8 см² - это ответ.