равнобедренный треугольник вписанный круг, который делит боковую сторону в отношение 2 : 3, начиная от вершины, что лежит против основы. Найдите периметр треугольника, если его основа равна 12 см.Треугольник АВС, АВ=ВС, АС=12, точка М касание на АВ, точка Н касание на ВС, точка К касание на АС, ВМ/АМ=2/3 = ВН/СН, АМ=АК как касательные проведенные из одной точки =3, СК=СН как касательные проведенные из одной точки = 3АС=АК+СК=3+3=6 = 12 см1 часть=12/6=2АВ=3+2=5 частей = 5 х 2 =10 = ВСпериметр = 10+10+12=32
1) расстояние от центра до одного из катетов =2,5 см - это средняя линия треугольника и,значит,другой равен 5 см, а второй катет находим по теореме Пифагора 13² = 5² +х ² х² = 169 -25 х² = 144 х = 12 2) треугольник АСЕ прямоугольный , у которого одна сторона равна 4, другая 8 а, третья по теореме Пифагора 8² = 4² + х² х² = 64 - 16 х² = 48 х = 4√3 радиус вписанной окружности найдем из площади треугольника 1/2 Р*r = 1/2 ab 1/2 (4 +8 +4√3)*r = 1/2 *4 *4√3 (12 +4√3)*r = 16√3 (3 +√3)*r = 4√3 r = 4√3/(3+√3)? избавимся от иррациональности в знаменателе r = 2*(√3 -1)
х² = 169 -25
х² = 144
х = 12
2) треугольник АСЕ прямоугольный , у которого одна сторона равна 4, другая 8 а, третья по теореме Пифагора 8² = 4² + х²
х² = 64 - 16
х² = 48
х = 4√3
радиус вписанной окружности найдем из площади треугольника
1/2 Р*r = 1/2 ab
1/2 (4 +8 +4√3)*r = 1/2 *4 *4√3
(12 +4√3)*r = 16√3
(3 +√3)*r = 4√3
r = 4√3/(3+√3)? избавимся от иррациональности в знаменателе
r = 2*(√3 -1)