По-моему решается так: 1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB. 2) Биссектриса делит угол АСД на равные углы АСМ и МСД. 3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ). 4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5. 5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10. 6) Периметр прямоугольника равен (10+5)2= 30 ответ: 30
Нарисуем четырехугольник и обозначим его вершины АВСД. Противоположные стороны ВС и АД с диагональю ВД образуют накрестлежащие ∠СВД=∠ВДА. По условию противоположные ∠А=∠С. В треугольниках АВД и СВД равны два угла. Сумма углов треугольника равна 180°, следовательно, и третий их угол равен. Тогда в треугольниках АВД и СВД равны углы при общей стороне ВД. Второй признак равенства треугольников: треугольники равны, если у них равны два угла и сторона между ними. Противоположные углы АВС и АДС четырехугольника АВСД каждый состоит из суммы равных углов: ∠СВД=∠ВДА по условию∠АВД=∠СДВ по доказанному; следовательно, углы АВС и АДС равны.
1) Назовём прямоугольник АВСД, биссектриса проведена к стороне АВ. Точка касания - М. Тогда по условию AM = MB.
2) Биссектриса делит угол АСД на равные углы АСМ и МСД.
3) Так как по свойству прямоугольника АВ параллельно СД, то угол МСД равен углу АМС (как накрест лежащие при секущей СМ).
4) Получим равнобедренный треугольник АСМ, сторона АС которого равна 5. А так как треугольник равнобедренный, то АС = АМ = 5.
5) АМ = МВ = 5, следовательно сторона АВ = 5+5= 10.
6) Периметр прямоугольника равен (10+5)2= 30
ответ: 30
Противоположные стороны ВС и АД с диагональю ВД
образуют накрестлежащие ∠СВД=∠ВДА.
По условию противоположные ∠А=∠С.
В треугольниках АВД и СВД равны два угла. Сумма углов треугольника равна 180°, следовательно, и третий их угол равен.
Тогда в треугольниках АВД и СВД равны углы при общей стороне ВД.
Второй признак равенства треугольников:
треугольники равны, если у них равны два угла и сторона между ними.
Противоположные углы АВС и АДС четырехугольника АВСД каждый состоит из суммы равных углов:
∠СВД=∠ВДА по условию∠АВД=∠СДВ по доказанному; следовательно, углы АВС и АДС равны.