1. Дайте определения или основные понятия или
приведите примеры:
1. Какой треугольник называется равнобедренным?
2) Приведите пример равенства треугольников по 1 признаку
3) Дай определение медианы треугольника
4) сформулируй свойство равнобедренного треугольника.
5) Сформулируй 2 признак равенства треугольников.
6) Как обозначаются равные элементы треугольников?
х
7) Сформулируй свойство медианы равнобедренного
треугольника.
Sкруга=4n
ВС=?
Sкруга=n×r^2
4n=n×r^2
r^2=4n/n=4
r=корень4=2 (ед)
NO=r=2 (ед)
Центром окружности является точка пересечения биссектрис. В равностороннем тр-ке биссектриса является медианой и высотой.
В равностороннем тр-ке углы равны 60 градусов.
Рассмотрим тр-к ВОN:
<OBN=<ABC:2=60:2=30 градусов, т. к ВL - биссектриса.
Катет лежащий против угла 30 равен половине гипотенузе :
ВО=2×NO=2×2=4(ед)
По теореме Пифагора :
ВN=корень(ВО^2-NO^2)=
=корень (4^2-2^2)=корень(16-4)=
=корень 12=2корень3(ед)
ВС=2×ВN=2×2корень3 =4корень3 (ед)
ответ : 4корень3 (ед)
Нельзя
Объяснение:
Обозначим ребра, идущие к вершине тетраэдра a, b, c.
А ребра в основании тетраэдра d, e, f.
Допустим, что можно так расставить числа от 1 до 6, что суммы на вершинах будут одинаковы и равны какому-то числу n.
Выпишем суммы на вершинах:
a + b + c = n
a + d + e = n
c + d + f = n
b + e + f = n
Складываем все 4 уравнения:
a+b+c+a+d+e+c+d+f+b+e+f = 4n
Каждое ребро повторяется по 2 раза:
2(a + b + c + d + e + f) = 4n
Сокращаем на 2:
a + b + c + d + e + f = 2n
Получилось, что сумма должна быть чётным числом. Но сумма:
a + b + c + d + e + f = 1 + 2 + 3 + 4 + 5 + 6 = 21 - нечётное.
Поэтому такая расстановка чисел от 1 до 6 на рёбрах тетраэдра невозможна.
И любой ряд из 6 чисел подряд - тоже нельзя так расставить.