1.Диагональ куба равна 34.
Найдите площадь его поверхности.
2 Найдите все диагонали правильной шестиугольной призмы, сторона
основания которой равна 12, а высота-10
3.Основанием треугольной призмы является
прямоугольник с катетами 9 и 12 боковое ребро призмы равно 10.Найдите площадь большей боковой грани.
4. Сторона основания правильной четырехугольной призмы равна 7 см, а
диагональ призмы образует с плоскостью основания угол 45°. Найдите диагональ
призмы, угол между диагональю призмы и плоскостью боковой грани, площадь сечения
призмы плоскостью, проходящей через сторону нижнего основания и противоположную
сторону верхнего основания
ответ: площадь треугольника равна 12см^2.
Объяснение:
Площадь треугольника можно вычислить по формуле:
S=(1/2)*a*b*sina, где а и b - стороны треугольника, а sina - синус угла между этими сторонами.
S=(1/2)*6*8"(1/2)=12см^2.
Или так: проведем высоту ВН к стороне АС. Это катет, лежащий против угла 30°. Он равен половине гипотенузы.
Тогда если сторона АВ=6см (гипотенуза), а сторона АС=8см, то ВН=3см и площадь треугольника равна S=(1/2)*AC*BH =(1/2)*8*3=12см^2.
Если АВ=8см, а АС=6см, то ВН=4см и S=(1/2)*6*4=12см^2.
1 вариант.
1) Если известны высота призмы и её диагонали (это катет и гипотенуза прямоугольного треугольника), то находим второй катет в треугольниках, составленных из Н = 2 см, D1 = 8 см D2 = 5 см.
Получаем диагонали ромба в основании призмы.
d1 = √(8² - 2²) = √(64 - 4) = √60 = 2√15 см.
d2 = √(5² - 2²) = √(25 - 4) = √21 см.
Зная диагонали основания, находим его сторону.
а = √((d1/2)² + (d2/2)²) = √(15 + (21/4)) = √(81/4) = 9/2 = 4,5 см.
2) Дано диагональное сечение куба с площадью, равной 49√2 см².
Его площадь равна: S = ad = a*(a√2) = a²√2.
Приравняем: a²√2 = 49√2, отсюда а = √49 = 7 см.
Диагональ куба определяется по формуле:
D = a√3 = 7√3.