Доказывать будем опираясь на признак параллелограмма (если у четырехугольника противолежащие стороны попарно параллельны, то это параллелограмм). Доказательство: 1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них АВ=СД (АВСД- пар-мм) АЕ=СК ( по условию) уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС следовательно ВЕ=ДК 2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них АД=СВ (АВСД- пар-мм) АЕ=СК ( по условию) уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС следовательно ВК=ДЕ 3) ЕВКД - параллелограмм по признаку из пп. 1;2
Доказательство:
1) тр АВЕ = тр СДК (по двум сторонам и углу м/д ними), т к в них
АВ=СД (АВСД- пар-мм)
АЕ=СК ( по условию)
уг КСД= уг ЕАВ как внутр накрестлежащие при AB||СД и секущ АС
следовательно ВЕ=ДК
2) тр АЕД = тр СКВ (по двум сторонам и углу м/д ними), т к в них
АД=СВ (АВСД- пар-мм)
АЕ=СК ( по условию)
уг ЕАД= уг КСВ (как внутр накрестлежащие при AД||СВ и секущ АС
следовательно ВК=ДЕ
3) ЕВКД - параллелограмм по признаку из пп. 1;2
BC:AC:AB=2:6:7 ВС=2х, АС=6х, АВ=7х
AB=BC+25 (см) Так как: АВ=ВС+25
7х = 2х+25
Найти: Р=? 5х = 25
х = 5
ВС=2х=10 (см), АС=6х=30(см), АВ=7х=35 (см)
Р = 10+30+35 = 75 (см)
ответ: 75 см