В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
rwessi1223
rwessi1223
14.04.2022 20:37 •  Геометрия

1. докажите, что треугольник abc - равнобедренный,если 2 мав = 2 всn, где м - точка на продолжении сто-роны ac за вершину a, n — точка на продолжении стороныac за вершину c.2. найдите угол bв треугольнике всd, если: 1) 2c = 37°, 2d = 55°; 2) bc icd и 2d = 41°; 3) bc = cd и 2c= 76°; 4) 20 = 100°, а внешний угол при вершине d равен 125°.3. найдите углы равнобедренного .4. найдите углы треугольников, на которые медианаразбивает равносторонний треугольник. мне ​

Показать ответ
Ответ:
lllviktorialll
lllviktorialll
22.11.2021 11:03
Так как EC - биссектриса, то:
\frac{DC}{ED} = \frac{CK}{EK} \ \ \textless \ =\ \textgreater \ \ \frac{CK}{DC}= \frac{EK}{ED}
при делении точкой отрезка на 2 части, относящиеся как m к n, есть формула для вычисления координат этой точки:
x= \frac{x_1+\lambda *x_2}{1+\lambda} \\y= \frac{y_1+\lambda *y_2}{1+\lambda} \\\lambda= \frac{m}{n}
ищем длины сторон:
для этого используем формулу |AB|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}
|ED|=\sqrt{(3+4)^2+7^2}=\sqrt{98} \\|EK|=\sqrt{(3-8)^2+(2-3)^2}=\sqrt{26} \\|DK|=\sqrt{144+64}=\sqrt{208}
находим координаты точки C:
x_1=8;\ x_2=-4;\ y_1=3;\ y_2=-5 \\\lambda= \frac{CK}{DC} = \frac{EK}{ED} = \frac{\sqrt{26}}{\sqrt{98}}=\sqrt{ \frac{26}{98} }=\sqrt{ \frac{13}{49} } = \frac{\sqrt{13}}{7} \\C( \frac{8+ \frac{\sqrt{13}}{7} *(-4)}{1+ \frac{\sqrt{13}}{7}} ; \frac{3+ \frac{\sqrt{13}}{7}*(-5)}{1+ \frac{\sqrt{13}}{7}} )=C( \frac{8- \frac{4\sqrt{13}}{7} }{ \frac{7+\sqrt{13}}{7} } ; \frac{3- \frac{5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}} )=
=C( \frac{ \frac{56-4\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}}; \frac{ \frac{21-5\sqrt{13}}{7} }{\frac{7+\sqrt{13}}{7}})=C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
теперь определим вид треугольника для этого используем теорему косинусов:
вид треугольника будем определять по косинусу самого большого угла; если cos<0, то угол тупой; если cos=0, то угол прямой; если cos>0, то угол острый.
Против большей стороны лежит больший угол, поэтому запишем теорему косинусов для DK и косинуса угла E:
DK^2=ED^2+EK^2-2ED*EK*cosE \\cosE= \frac{ED^2+EK^2-DK^2}{2ED*EK} = \frac{98+26-208}{2\sqrt{98*26}}\ \textless \ 0
cosE<0 поэтому угол тупой и треугольник тупоугольный
ответ:
1) C( \frac{56-4\sqrt{13}}{7+\sqrt{13}} ; \frac{21-5\sqrt{13}}{7+\sqrt{13}} )
2) треугольник тупоугольный
0,0(0 оценок)
Ответ:
mlphappyme
mlphappyme
23.12.2021 11:37
Эту задачу можно решить векторным методом или геометрическим.
Решаем геометрическим
Находим длины сторон по координатам.
   Вектор АВ( -2; 4; 2).  |AB| = √(4+16+4) = √24 ≈  4,8989795.
   Вектор ВС( 0; -4; -4). |BC| = √(0+16+16) = √32 ≈  5,65685425.
   Вектор АС (;-2; 0; -2 ). |AC| = √(4+0+4) = √8 ≈  2,8284271.
По теореме косинусов находим угол С.
cos C = (24+32-8)/(2*√24*√32) = 48/(2√768) = 24/√768 = √3/2.
Угол С равен 60 градусов.
Внешний угол при вершине С равен 180-60 = 120 градусов.
Можно добавить, что треугольник АВС - прямоугольный: сумма квадратов сторон АВ и АС равна квадрату стороны ВС.
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота