1. Дуга кругового сектора равна 105°. Найдите площадь этого сектора, если площадь всего круга равна 48см^2. 2. Длина дуги в 72° равна 5см. Найдите длину всей окружности.
Углы ромба, прилежащие к одной стороне, в сумме равны 180°, следовательно, острый угол ромба равен 180°-120°=60°. Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны. Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой) равны по 60°. Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть сторона ромба= 36:4=9. ответ: меньшая диагональ ромба равна 9.
Радиус вписанного в треугольник круга можно найти по формуле
r=S:p, где S- площадь треугольника, р- его полупериметр.
р=(10+24+26):2=30
Площадь треугольника найдем по формуле Герона:
S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны.
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120
r=120:30=4 см
S =16π см²
Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника.
Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности
Меньшая диагональ ромба лежит против острого угла, причем является основанием равнобедренного треугольника, так как боковые стороны этого треугольника - стороны ромба, которые равны.
Итак, в равнобедренном треугольнике угол при вершине равен 60°, следовательно и углы при основании (равные между собой)
равны по 60°.
Имеем РАВНОСТОРОННИЙ треугольник, в котором все стороны равны стороне ромба, то есть и меньшая диагональ равна этой стороне.. Сторона ромба равна периметру, деленному на 4, то есть
сторона ромба= 36:4=9.
ответ: меньшая диагональ ромба равна 9.
Площадь круга находят по формуле
S =πr²
Радиус вписанного в треугольник круга можно найти по формуле
r=S:p, где S- площадь треугольника, р- его полупериметр.
р=(10+24+26):2=30
Площадь треугольника найдем по формуле Герона:
S=√{(p−a)(p−b)(p−c)}, где р- полупериметр треугольника, а, b и с - его стороны.
S=√(30•20•6•4)= √(6•5•5•4•6•4)=6•5•4=120
r=120:30=4 см
S =16π см²
Радиус найти будет проще, если заметить, что отношение сторон этого треугольника из так называемых Пифагоровых троек, а именно 10:24:26=5:12:13 Это отношение сторон прямоугольного треугольника.
Тогда по формуле радиуса вписанной в прямоугольный треугольник окружности
r=(a+b-c):2, где а, b - катеты, с - гипотенуза:
r=(10+24-26):2=4 cм.
Площадь круга, естественно. будет та же - 16π см²