1.два ребра прямоугольного параллелепипеда выходящие из одной вершины,равна 9 и 12.объем параллелепипеда равен 540.найдите третье ребро параллелепипеда,выходящее из этой вершины.(с дано если можно) 2.в правильной трехугольной пирамиде сторона основания равна 4.а высота 8.найдите площадь полной поверхности пирамиды.(тоже с дано)
Длина отрезка АМ = √(3-(6))²+(-1+3)²) = √(81+4) = √85.
Составляем уравнение окружности (х-3)²+(у+1)² = 85.
Ордината точки нам известна у = 6, подставляем её в уравнение и находим неизвестную величину р = х:
х² - 6х + 9 + (6 + 1)² = 85.
Получаем квадратное уравнение х² - 6х + 9 -27 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-6)^2-4*1*(-27)=36-4*(-27)=36-(-4*27)=36-(-108)=36+108=144;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√144-(-6))/(2*1)=(12-(-6))/2=(12+6)/2=18/2=9;
x_2=(-√144-(-6))/(2*1)=(-12-(-6))/2=(-12+6)/2=-6/2=-3.
Это и есть 2 значения параметра р:
р₁ = 9,
р₂ = -3.
Второй угол между диагоналями прямоугольника равен 58° как вертикальный.
Так как сумма всех углов 360°, то
360°-58°-58°=244°
244°:2=122° - два других угла при диагоналях.
Рассмотрим треугольники, образовавшиеся в прямоугольника.
Они попарно равны.
Сумма всех углов каждого треугольника 180°.
Отсюда 180°-58°=122°
122°:2=61° - угол между диагональю и меньшей стороной прямоугольника;
180°-122°=58°
58°:2=29° - угол между диагональю и большей стороной.
ответ: величины углов, которые образует диагональ со сторонами прямоугольника 29° и 61°.
При проверке 29°+61°=90° - прямой угол прямоугольника.