По условию задачи просят найти неизвестную сторону ромба, то есть проведя диагонали мы получили 4 прямоугольных треугольника. гипотенуза равна 12 и один из катетов (высота) 2,4, нам надо найти второй катит, здесь нам Пифагор ищем катет по формуле c2=b2+a2, и остается только подставить 144=5,76+x2, получилось уравнение, но перед тем как его решить необходимо записать его в правильном виде −x2=5,76−144/*(−1) x2=−5,76+144 x2=138,24 /2 x= 69,12 после извлекаем корень из 69,12 и получаем приблезительно 8,3
Будем рассматривать ΔВЕС и ΔDАВ. 1. Рассмотрим Δ ВЕС: СЕ=ВС(по усл.)⇒ΔВЕС - равнобедренный(по опр.) Найдем ∠ВСЕ. Он смежен с ∠ВСА, то есть в сумме они дают 180°(по св-ву смежных углов): 180-76=104 Найдем ∠СЕВ и ∠СВЕ. ∠СЕВ=∠СВЕ(по св-ву равнобедренного Δ) ∠СЕВ==38 2. Рассмотрим Δ DAВ: DA=АВ(по усл.)⇒Δ DAВ - равнобедренный(по опр.) Найдем ∠DAВ. Он смежен с ∠ВАС(или является внешним углом треугольника АВС и равен сумме углов не смежных с ним), тогда: 180-48=132 Найдем ∠ADВ и ∠DBA. Они равны(по св-ву равноб.Δ) ∠ADВ==24 3.Вернемся к исходному ΔDBE: ∠D=24 ∠E=38 ∠В - можно найти, сложив 24,56 и 38(найденные углы), а можно воспользоваться теоремой о сумме ∠Δ(сумма равна 180). 180-24-38=118 ответ: 24,38,118
x2=−5,76+144
x2=138,24 /2
x= 69,12
после извлекаем корень из 69,12 и получаем приблезительно 8,3
1. Рассмотрим Δ ВЕС:
СЕ=ВС(по усл.)⇒ΔВЕС - равнобедренный(по опр.)
Найдем ∠ВСЕ. Он смежен с ∠ВСА, то есть в сумме они дают 180°(по св-ву смежных углов): 180-76=104
Найдем ∠СЕВ и ∠СВЕ. ∠СЕВ=∠СВЕ(по св-ву равнобедренного Δ)
∠СЕВ==38
2. Рассмотрим Δ DAВ:
DA=АВ(по усл.)⇒Δ DAВ - равнобедренный(по опр.)
Найдем ∠DAВ. Он смежен с ∠ВАС(или является внешним углом треугольника АВС и равен сумме углов не смежных с ним), тогда:
180-48=132
Найдем ∠ADВ и ∠DBA. Они равны(по св-ву равноб.Δ)
∠ADВ==24
3.Вернемся к исходному ΔDBE:
∠D=24
∠E=38
∠В - можно найти, сложив 24,56 и 38(найденные углы), а можно воспользоваться теоремой о сумме ∠Δ(сумма равна 180).
180-24-38=118
ответ: 24,38,118