1. Две стороны треугольника равны 8 см и 6 см, а угол между ними - 120°. Найдите третью сторону треугольника и его площадь. 2. Два угла треугольника равны 60° и 45°, а сторона, лежащая против большего из них, равна 42 см. Найдите сторону треугольника, лежащую против меньшего из данных углов.
3. Найдите неизвестные стороны и углы треугольника АВС, если АВ = 8 см, А = 40°, B = 20°.
4. Две стороны треугольника равны 14 см и 18 см, а медиана, проведенная к третьей стороне, - 8 см. Найдите неизвестную
сторону треугольника.
найти площадь треугольника?
Зная tga=3 легко найти cosa и sina
cosa=1/корень(1+tg^2a)=1/корень(1+9)=1/корень(10)
sina=корень(1-cos^2a)=корень(1-1/10)=корень(9/10)=3/корен(10)
Соседний катет AC равен
IACI=IABI*cosa=5*1/корень(10)=корень(10)/2
Площадь треугольника равна
S=(1/2)*IABI*IACI*sina = (1/2)*5*(корень(10)/2)*3/корень(10)=15/4= 3,75
Второй вариант
Обозначим прямоугольный треугольник как АВС где угол С-прямой
АС=5-гипотенуза ВС и АВ -катеты
tga = ВС/AC =3 или ВС =3АС
Пусть АС =х
Тогда ВС=3х
По теореме Пифагора
АС^2+BC^2=AB^2
x^2+9x^2=25
10x^2=25
x=корень(2,5)
Поэтому катеты равны
AC=корень(2,5)
ВС=3корень(2,5)
Площадь треугольника равна
S=(1/2)AC*BC=(1/2)*корень(2,5)*3корень(2,5)=3*2,5/2=7,5/2=3,75
Рассмотрим ΔАВО. ОА - радиус окружности. ВА - касательная. Радиус окружности, проведенный в точку касания перпендикулярен касательной. Следовательно ΔАВО прямоугольный. ∠ОАВ = 90°.
ОА=5 - катет, ОВ = 10 - гипотенуза. Катет в два раза короче гипотенузы, следовательно он лежит напротив угла в 30°. Значит ∠АВО=30°, ∠АОВ=90°-30°=60°.
Рассмотрим ΔОВС. Он прямоугольный, т.к. радиус ОС проведен в точку касания, т.е. ОС⊥СВ. АО=ОС, т.к. являются радиусами окружности. ОВ - общая сторона треугольников АВО и ОВС. ΔАВО=ΔОВС по гипотенузе и катету.
Следовательно ∠АОВ=∠ВОС=60°.
∠АОС=∠АОВ+∠ВОС=60°+60°=120°.
ответ: ∠АОС=120°.