1.)Если расстояние от центра окружности до прямой меньше радуса окружности: (d<r)то прямая имеет с окружностью общих точек.
Выберите ответ
1
2
0
другой ответ
2.) Общая точка окружности и касательной называется точкой
Выберите ответ
пересечения
разрыва
касания
удаления
помните
2)Два смежных угла вместе составляют развернутый угол. Мера развернутого угла 180град. Значит сумма мер двух смежных углов равна 180 градусов
3)дано:
развернутые углы а и б
лучи с и д проходят между сторонами соответственных углов
углы 1и3 2и4 смежные
углы 1 и 2 равны
доказательство:
1. угол а: угол 3=180-угол1(по аксиоме измерение углов) | угол 3=180-угол1
уголб:угол 4=180-угол 2(по аксиоме измерение углов) |=> угол 4=180-угол1
угол1=углу2(по условию) |углы 3и4 равны
5)основа - развернутый угол. принятый за 180 градусов. А
половина развернутого называется ПРЯМЫМ
угол. меньше прямого острый
угол. больший прямого. но меньший развернутого тупой.
6)Вертикальные углы - два угла, у которых стороны одного являются продолжениями сторон другого
7)Вертикальные углы равны!
Представь углы 1 , 3 и 2 , 4. Угол 2 является смежным как с углом 1 так и с углом 3. Два угла , у которых одна сторона общая а две другие являются
продолжениями одна другой, называються смежными. По свойству смежных углов < 1+<2=180градусов. <3+<2=180градусов
Отсюда получаем <1=180-<2. <3=180-<2 таким образом, градусные меры углов 1 и 3 равны.
Значит и сами углы равны. Теорема доказана
2) Пусть угол LON и угол DON –данные смежные углы, луч OD проходит между сторонами OL и ON развернутого угла LON. Поэтому сумма угола LON и угола DON равна развернутому LON,то есть, равна 180 градусам.
3) 
Из теоремы 2.1 следует, что если два угла равны, то смежные с ними углы равны.
Допустим, углы (a1b) и (c1d) равны. Нам нужно доказать, что углы (a2b) и (c2d) тоже равны.
Сумма смежных углов равна 180°. Из этого следует, что a1b + a2b = 180° и c1d + c2d = 180°. Отсюда, a2b = 180° - a1b и c2d = 180° - c1d. Так как углы (a1b) и (c1d) равны, то мы получаем, что a2b = 180° - a1b = c2d. По свойству транзитивности знака равенства следует, что a2b = c2d. Что и требовалось доказать.
4) Угол, равный 90°, называется прямым углом.
Угол, меньший 90°, называется острым углом.
Угол, больший 90° и меньший 180°, называется тупым.
5)Из теоремы о сумме смежных углов следует, что угол, смежный с прямым углом, есть прямой угол: x + 90° = 180°, x= 180° - 90°, x = 90°.