1. Функция определена на R. Используя график производной , установите:
а) промежутки убывания функции [1] b) точки минимума функции. [2] с) Найдите вторую производную функции и определите точки перегиба графика функции [3]
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
По условию АВ : AD : AA₁ = 1 : 1 : 2
Пусть х - коэффициент пропорциональности. Тогда
АВ = AD = x
АА₁ = 2х
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
DB₁² = AB² + AD² + AA₁²
x² + x² + (2x)² = (2√6)²
2x² + 4x² = 24
6x² = 24
x² = 4
x = 2 (x = - 2 не подходит по смыслу задачи)
АВ = 2, AD = 2, АА₁ = 4.
Угол между прямой и плоскостью - угол между прямой и ее проекцией на эту плоскость. В₁D - наклонная, BD - ее проекция, тогда угол между В₁D и плоскостью АВС - ∠В₁DB.
ΔB₁BD:
sin∠B₁DB = BB₁ / B₁D = 4 / (2√6) = 2/√6 = √6/3
∠B₁DB = arcsin (√6/3)
А + В = 180
биссектрисы делят углы пополам...
А/2 + В/2 = 90 => треугольник АВК прямоугольный и угол АКВ = 90 градусов...
т.к. углы В и D равны, то треугольник АКD будет равнобедренным и
AD=DK (угол АКD = 180-В-А/2 = А-А/2 = А/2 = KAD)))
аналогично окажется равнобедренным и треугольник ВСК
угол ВКС = 180-С-В/2 = 180-А-В/2 = В-В/2 = В/2 = CВК => ВС=СК
2*(АВ+ВС) = 45 = 2*(DC+BC) = 2*(DK+KC+BC) = 2*(AD+BC+BC) = 6*BC
BC = 45/6 = 7.5
AB = DC = DK+KC = AD+BC = 2*BC = 15
запишем разность периметров треугольников BCK и ADK:
BC+CK+KB - (AD+DK+KA) = 3
KB = 3+KA
по т.Пифагора AB^2 = AK^2 + BK^2
225 = AK^2 + (3+AK)^2 = 2*AK^2 + 6*AK + 9
AK^2 + 3*AK - 108 = 0
AK = 9
BK = 12