1. Хорда делит окружность на две дуги, градусные меры которых пропорциональны числам 4 и 6. Чему равен угол, вписанный в данную окружность, сторонам которого принадлежат концы этой хорды?
Построение сечения: Назовем искомую плоскость MNK . Плоскости ABC и A1B1C1 параллельны и пересечены плоскостью , следовательно, линии пересечения параллельны. Значит, пересекает А1В1С1 по прямой КF, параллельной MN. Значит, F - середина А1В1. Осталось соединить KF, FM, MN, NK. Искомое сечение - FKNM.
Доказательство: В треугольнике ABD MN-средняя линия, MN || BD. Т.к MN лежит в плоскости сечения MNK, а BD параллельна прямой MN, лежащей в плоскости сечения, ВD параллельна плоскости MNK, что и требовалось доказать.
Построение сечения: Назовем искомую плоскость MNK . Плоскости ABC и A1B1C1 параллельны и пересечены плоскостью , следовательно, линии пересечения параллельны. Значит, пересекает А1В1С1 по прямой КF, параллельной MN. Значит, F - середина А1В1. Осталось соединить KF, FM, MN, NK. Искомое сечение - FKNM.
Доказательство: В треугольнике ABD MN-средняя линия, MN || BD. Т.к MN лежит в плоскости сечения MNK, а BD параллельна прямой MN, лежащей в плоскости сечения, ВD параллельна плоскости MNK, что и требовалось доказать.
поскольку это равнобедренный треугольник то его две стороны должны быть одинаковой длины
тоесть или 5 см и 5 см или 2 см и 2 см
рассмотрим эти два случая (фото)
за признаком треугольника :
Длина третьей стороны треугольника должна быть больше суммы двух других сторон, и не может быть и меньше разности двух других сторон
рассмотрим случай где две стороны 5 и одна 2
5-5<2<5+5
0 <2<10
....
5-2<5<5+2
3<5<7
неравенство верное,значит такой треугольник существует
--------------------------------
рассмотрим случай где две стороны 2 и одна 5
2-2<5<2+2
0<5<4
поскольку 5>4 то такого треугольника не существует
ОТВЕТ: ДВЕ СТОРОНЫ ТРЕУГОЛЬНИКА РАВНЫ 5 СМ И ТРЕТЬЯ 2 СМ