1) хорда длиной 12 см отстоит от от центра сферы на 6 см. найти радиус сферы 2)найти площадь большого круга и длину экватора шара , если его радиус 2 м 3)шар, радиус которого равен 25 дм,пересечен плоскостью на расстоянии 5 дм от центра . найдите площадь сечения
Исправлены опечатки и добавлен рисунок.
1. Пусть АВ = 12 см - хорда, О центр сферы. Точку О соединим с концами хорды. Получили равнобедренный треугольник, АО = ВО как радиусы сферы.
Проведем высоту ОН. Это и будет расстояние от центра сферы до хорды.
Значит ОН = 6 см.
Высота ОН является также и медианой, значит АН = 12 : 2 = 6 см.
По теореме Пифагора ОА = √(36 + 36) = 6√2 см
ответ: 6√2 см
2. Большой круг получится в результате сечения сферы плоскостью, проходящей через ее центр. S =π · r² = 4π м²
Длина экватора - это длина окружности данного круга, т.е.
с = 2 π r = 2 · π · 2 = 4π м
ответ: 4π м², 4π м.
3. Сечением шара плоскостью всегда является круг. Значит нужно найти площадь этого круга.
Пусть АВ - диаметр этого круга, О - центр шара. Как и в первой задаче треугольник АОВ равнобедренный АО = ВО = 25 дм как радиусы шара. ОН = 5 дм - высота треугольника, она же и есть расстояние от центра до сечения.
АН - это радиус сечения (круга). Найдем его.
АН = √(25² - 5²) = √(625 - 25) = √600 дм
Площадь сечения:
S = πr² = 600π дм²
ответ: 600π дм²