Около треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров. ОР, ОК, ОМ - серединные перпендикуляры, значит АР=РВ, ВК=КС, АМ=МС. АО=r=16см уголВАО=30градусов в треугольникеАРО катет РО равен половине гипотенузы АО, т.к. лежит против угла 30 градусов. РО=16:2=8см АР^2=16^2-8^2=256-64=192 АР=корень из192. АВ=2*(корень из192)=2*(8корней из3)=16корней из3.
ОР, ОК, ОМ - серединные перпендикуляры, значит АР=РВ, ВК=КС, АМ=МС.
АО=r=16см
уголВАО=30градусов
в треугольникеАРО катет РО равен половине гипотенузы АО, т.к. лежит против угла 30 градусов. РО=16:2=8см
АР^2=16^2-8^2=256-64=192
АР=корень из192.
АВ=2*(корень из192)=2*(8корней из3)=16корней из3.
треугольник ОКС равнобедренный, т.к. уголОСК=45градусов, уголКОС=90-45=45градусов => ОК=КС (пусть =х)
х^2+х^2=16^2
2х^2=256
х^2=128
х=корень из128
КС=корень из128.
ВС=2*(корень из128)=2*(8корней из2)=16корней из2
Дорисуем на рисунке радиус OB.
Получим два равнобедренных треугольника AOB,AO = OB = 16 и COB, CO = OB = 16
Углы при основании равнобедренного треугольника равны = > угол OAB = углу OBA = 30 градусов.
Угол OCB = OBC = 45 градусов.
Найдем углы при вершинах этих треугольников
Угол BOA = 180 - (30+30) = 120
Угол BOC = 180 - ( 45 + 45) = 90
1.Найдем сторону BC из прямоугольного равнобедренного треугольника BOC по теореме пифагора.
16^2 + 16^2 = BC^2
BC = корень из 512 = 16 корней из 2
2.Найдем AB из равнобедренного треугольника BA.
AB = 2*BO*cos30.
AB = 32 * корень из 3 / 2 = 16 корней из 3