1. ( ) Используя рисунок, запишите, какие из предложенных равенств верны для данного треугольника
А
8
a) sin B
15.
17
15
б) sin A =
17
() tos 4 = 2
15
- 15
В
г) cos A
17
8
д) cos A =17
2. ( ) Две стороны прямоугольного треугольника равны 7 см и 9 см. Найдите
третью сторону треугольника. Рассмотрите все возможные случаи.
3
3. [ ) в прямоугольном треугольнике cosa =
10
а) Вычислите tg a;
б) Используя значение тангенса, постройте угол а.
4. ( ] Высота прямоугольного треугольника, проведенная к гипотенузе, делит
ее на отрезки длиной 3 см и 12 см. Найдите катеты треугольника.
5. [ ] Найдите углы ромба ABCD, если его сторона равна 8 см, а большая
диагональ 83 см.
IАВI=sqrt((0+6)^2+(5-1)^2)=sqrt(36+16)=sqrt(52)=2*sqrt(13);
ICDI=sqrt((6-0)^2+(-4+8)^2)=sqrt(36+16)=sqrt(52)=2*sqrt(13);
2) IBCI=sqrt((0-6)^2+(5+4)^2)=sqrt(36+81)=sqrt(117)=3*sqrt(13);
IADI=sqrt((-6-0)^2+(1+8)^2)=sqrt(36+81)=sqrt(117)=3*sqrt(13);
3) так как противоположные стороны 4-хугольника равны, то это параллелограмм.
4) IACI=sqrt((6+6)^2+(-4-1)^2)=sqrt(144+25)=sqrt(169)=13;
IBDI=sqrt((0-0)^2+(5+8)^2)=sqrt(169)=13;
5) параллелограмм с равными диагоналями - параллелограмм;
6) пусть точка пересечения диагоналей - точка О(х;у) - середина диагонали АС. По формулам координат середины отрезка О((6-6)/2;(-4+1)/2), т.е. О(0;-1,5).