1. используя теорему синусов, решите треугольник abc, если cb=8 см, угол а=30, угол b=75.
2. найдите площадь треугольника abc , если ас=40 см, угол а=15, угол в=14.
3. используя теорему косинусов, решите треугольник авс, если св=5 см, ас=8 см, угол с=45
желательно на листочке
(20 )
треугольники АВС И DJK - равнобедренные;
P треугольника АВС = Р треугольника DJK
AB = DJ
Доказать, что треугольник ABC = треугольнику DJK.
Доказательство:
Из свойства равнобедренного треугольника нам известно, что равнобедренном треугольнике боковые стороны равны. Их периметры - это сумма длин всех сторон. (Р треугольника = АВ+ВС+AC) Так как основания у обоих треугольников соответственно равны (AC=DK), то их боковые стороны равны: периметр минус основания и разделить на два (т.к. боковых стороны две). Отсюда следуют, что у обоих данных треугольников все стороны попарно равны (AB = DJ, BC = JK, AC = DK), значит, данные треугольники равны.
Доказано.
найти: Sполн.пов
решение.
Sполн.пов=Sбок+Sосн
Sбок=Росн*ha, ha-апофема
Sосн=а²
АВСД - квадрат. найдем диагональ АС по теореме Пифагора:
АС²=АВ²+ВС². АС=2√2
рассмотрим ΔМАО:
(О- точка пересечения диагоналей квадрата-основания пирамиды)
<MAO=45°,
AO=2√2/2, AO=√2. ΔMAO - прямоугольный равнобедренный, ⇒МО=√2
МК-апофема.
рассмотрим ΔМОК: <MOK=90°(MO-высота пирамиды)
ОК=2:2, ОК=1
найдем МК по тереме Пифагора:
МК²=МО²+ОК², МК=√3
Sполн.пов=(4*2*√3)+2²=8√3+4
Sполн.пов=8√3+4