1. из точки а к окружности с центром о проведены касательные ab и ас, b и c - точки касания. найдите углы треугольника abo, если угол boc=130°. рисунки сделайте в пэинте и киньте файлам или ещё как нибудь
Касательная к окружн-ти,перпендикулярна к ее радиусу, проведенному в точку касания. ОВ и ОС - радиусы, проведенные в точки касания В и С, значит, треуг-ки АВО и АСО - прямоуг-ные. Кроме того. ОС=ОВ - как радиусы одной окр-ти, а АО - их общая сторона (она же гипотенуза), т.е., треуг-ки АВО и АСО равны по катету и гипотенузе, значит, и углы у них соответственно равны, значит угол АОВ = углу АОС=130/2=65 град.
Итак угол АВО -прямой, т.е.=90 град., угол АОС=65 град., а
Рисунки элементарные,можно с ними не морочиться.
Касательная к окружн-ти,перпендикулярна к ее радиусу, проведенному в точку касания. ОВ и ОС - радиусы, проведенные в точки касания В и С, значит, треуг-ки АВО и АСО - прямоуг-ные. Кроме того. ОС=ОВ - как радиусы одной окр-ти, а АО - их общая сторона (она же гипотенуза), т.е., треуг-ки АВО и АСО равны по катету и гипотенузе, значит, и углы у них соответственно равны, значит угол АОВ = углу АОС=130/2=65 град.
Итак угол АВО -прямой, т.е.=90 град., угол АОС=65 град., а
угол ВАО= 180 - (90+65)=180-155=25 град.