№1. Из точки А к плоскости α проведены перпендикуляр АВ и наклонная АС. ВС – проекция наклонной.
1) если АВ = 4 см, АС = 5 см, то найдите ВС; (3 см)
2) если АВ = 6,5м, ∟АСВ =300, то найдите АС и ВС; (5м, (5√3)/2м )
3) если АС = 13 см, ВС = 12 см, то найдите АВ. (5 м)
По теореме косинусов находим квадрат третей стороны треугольника:
ВС² = АВ²+АС²-2*АВ*АС*Cos45° = 128+324-2*8√2*18*0,707 =164.
Продолжаем медиану за точку пересечения с третей стороной и откладываем на продолжении отрезок, равный медиане. Имеем параллелограмм ( по признаку параллелограмма: если диагонали четырехугольника делятся в точке их пересечения пополам, то этот четырехугольник - параллелограмм). По свойству параллелограмма: "Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон" находим вторую диагональ (первая это ВС):
164+X² =2*(128+324), отсюда Х = √740 ≈ 27,2 Это две медианы, значит медиана равна 13,6.
d1^2=a^2+b^2-2*cos(120)*a*b. теперь мы знаем большую диагональ основания, осталось только из квадрата диагонали параллелепипида вычесть квадрат d1. Из полученной разности извлекаем квадрат получаем ответ.
d1^2=9+25+15=49
100-49=51
ответ: корень из 51