1)из точки пересечения диагоналей прямоугольника восстановлен перпендикуляр длинной 2 см. найдите расстояния от конца перпендикуляра до вершин прямоугольника, если его стороны равны 4см и см.
2)треугольник абс - прямоугольный и равнобедренный с прямым углом с и гипотенузой 4см. отрезок см перпендикулярен плоскости треугольника и равен 2 см. найдите расстояние от точки м до прямой аб.
ответ: а) 6/√5 (ед. длины). б) 108/√5=21,6√5 (ед. площади)
Объяснение: Центр окружности, вписанной в треугольник, лежит на биссектрисе его угла.⇒ АН - биссектриса угла ВАD, О - центр окружности. ОК и ОЕ - радиусы, проведенные к точкам касания. По свойству отрезков касательных, проведенных к окружности из одной точки. АК=АЕ; DE=DH; FK=FH
Примем АК=АЕ равным х. Тогда ЕD=DH=9-х.
а) Рассмотрим рисунок приложения. Угол AFD=∠CDF (накрестлежащие при FA||CD и секущей FD) Но ∠CDF=∠ADF (DF- биссектриса ) ⇒ ∠АFD=∠FDA. ⇒ ∆ FAD – равнобедренный и AF=AD=9.
АН - биссектриса угла равнобедренного треугольника, ⇒ АН – его высота и медиана ( свойство). ⇒ FН=НD=9-х
Аналогично в ∆ КАЕ биссектриса АМ равнобедренного ∆ АКЕ - медиана и высота. ⇒ КМ=МК=4:2=2.
Прямоугольные ⊿ МАЕ и ⊿ НAD подобны по общему острому углу при А. Из подобия следует отношение DH:ЕМ=DA:ЕА.
т.е. (9-х):2=9:х., откуда получаем х²-9х+18=0. По т.Виета х₁+х₂=-(-9)=9; х₁•х₂=18 ⇒ х₁=3; х₂=6
По условию АЕ< AD, поэтому АЕ=3, ED=6
Из ⊿ АНD по т.Пифагора АН=√(AD*-DH*)=√(81-36)=3√5
⊿ АОЕ и ⊿ АDH подобны по общему углу при вершине А, из чего следует ОЕ:DH=AE:AH ⇒ r=AE•DH:AH =3•6:3√5.=6/√5.
б) При условии, что окружность касается стороны BC параллелограмма, диаметр РЕ окружности, вписанной в угол ВАD, будет высотой параллелограмма. S=h•a=2r•AD=(12/√5)•9=108/√5. = 21,6√5 (ед. площади)
Проведем BD параллельно АС. Тогда <PAC=<BDA, как накрест лежащие при параллельных прямых BD и AC и секущей АD.
∆АКМ ~ ∆BKD по двум углам (1).
∆АРС ~ ∆DРВ по двум углам (2).
Из (1) BD/AM=4 и BD=4AM = 2AC.
Из (2) BP/PC=2.
ВМ - медиана и по ее свойствам Sabm=Scbm.
Треугольники АВК и АКМ - треугольники с общей высотой к стороне ВМ. Значит Sabk/Sakm=4/1. => Sabk=Sabc*(1/2)*(4/5)=(2/5)*Sabc.
Sakm=Sabc*1/(2*5)=(1/10)*Sabc.
Треугольники ABP и APC - треугольники с общей высотой к стороне ВC.
Значит Sabp/Sapc=2/1. => Sapc=Sabc*1/3=(1/3)*Sabc.
Тогда Skpcm=Sapc-Sakm = (1/3)*Sabc-(1/10)*Sabc = (7/30)*Sabc.
Sabk/Skpcm=(2/5)/(7/30)=12/7.