1)к плоскости треугольника из центра вписанной в него окружности восстановлен перпендикуляр длиной 3. найдите расстояние от конца этого перпендикуляра до сторон треугольника, если длины сторон треугольника 13 14 и 15.
2)точка м лежит вне плоскости ромба abcd на равном расстоянии от его сторон. найдите расстояние от проекции точки м на эту плоскость до сторон ромба, если сторона ромба равна 12 ,а острый угол 30 градусов.
получите много ,если дадите полноценные и правильные решения. т.е. с дано,рисунками,решениями и ответами.
Обозначим стороны основания а = АD= 15 и неизвестная сторона в = DС.
Дианональ боковой стороны d1 = DC1 = 16, диагональ основания d2 неизвестна, диагональ параллелепипеда B1D = D = 19, высота параллелепипеда Н неизвестна.
Используем теорему Пифагора:
b² = d1² - Н²
или
b² = 256 - Н² (1)
d2² = D² - H²
или
d2² = 361 - H² (2)
вычтем (1) из (2)
d2² - b² = 361 - 256
d2² - b² = 105
или
d2² = 105 + b² (3)
Используем теперь теорему косинусов для треугольника, образованного сторонами основания а и b и диагональю d2:
d2² = а² + b² - 2ab·cos60°
d2² = 15² + b² - 2·15·b·0.5
d2² = 225 + b² - 15b (4)
Приравняем правые части выражений (3) и (4)
105 + b²= 225 + b² - 15b
105 = 225 - 15b
15b = 120
b = 8
Высоту параллелепипеда Н найдём из (1)
Н² = 256 - b² = 256 - 64 = 192
Н = √192 = 8√3
Площадь боковой поверхности
Sбок = 2Н·(а+b) = 2·8√3·(15+8) = 368√3
тебе это нужно
см объяснение
Объяснение:
1) ∠4 = ∠3= 120° как соответственные углы,
2) см. фото. Пусть ∠1 = 62°.
∠3 = ∠1 = 62° как вертикальные углы,
∠5 = ∠1 = 62° как соответственные углы,
∠7 = ∠5 = 62° как вертикальные углы,
∠2 = 180° - ∠1 по свойству смежных углов, 180° - 62° =118°
∠4 = ∠2 = 118° как вертикальные,
∠6 = ∠2 = 118° как соответственные,
∠8 = ∠6 = 118° как вертикальные.
3) Углы при параллельных прямых и секущей-
Накрест лежащие углы равны, то есть, если их сумма равна 110°, то каждый из них равен 55° (110:2=55)
Найдем смежный угол. Сумма смежных углов равна 180°.
180-55=125°