Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180 , возьмем такую точку А на меньшей дуге, и на большой точку В , углы AMB+ANB=180 гр , угол В = 180-120=60
угол NBM вписанный и равен половине центрального то есть 120 гр, и через равнобедренный треугольник NOM
Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1)
или вот рисунок
Около четырёхугольника можно описать окружность тогда и только тогда, когда сумма противоположных углов равна 180 , возьмем такую точку А на меньшей дуге, и на большой точку В , углы AMB+ANB=180 гр , угол В = 180-120=60
угол NBM вписанный и равен половине центрального то есть 120 гр, и через равнобедренный треугольник NOM
найдем по теореме косинусов MN
MN^2 =2*8^2-2*8^2*cos120
MN=√192 = 8√3
2)
площадь ромба
S=d1*d2/2
стало 1.1d1 , другая 0.85d2
S=1.1*0.85*d1*d2/2 = 0.935*d1*d2/2
то есть 1-0,935 = 0,065 уменшиться на 6,5 %
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²