1)Какая фигура имеет сечение, проходящей параллельно оси цилиндра?
2)Если высота цилиндра ровна диаметру, то осевое сечение-..?
3)Если высота цилиндра равна его образующей, то говорят этот цилиндр...
4)Высота цилиндра меньше образующей, то говорят - этот цилиндр...?
5)Как называются отрезки, из которых состоит боковая поверхность целиндра?
Если три стороны одного треугольника соответственно пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Дано: ΔАВС, ΔА₁В₁С₁,
Доказать: ΔАВС подобен ΔА₁В₁С₁.
Доказательство:
На стороне АС треугольника АВС отложим СА₂ = С₁А₁ и проведем А₂В₂║АВ.
Так как прямая, параллельная стороне треугольника, отсекает треугольник, подобный данному, то
ΔАВС подобен ΔА₂В₂С , значит их стороны пропорциональны:
, а так как А₂С = А₁С₁, то получаем
,
По условию:
.
Из этих двух равенств следует, что
А₂В₂ = А₁В₁ и В₂С = В₁С₁.
Тогда ΔА₁В₁С₁ = ΔА₂В₂С по трем сторонам.
Значит,
ΔАВС подобен ΔА₁В₁С₁.
МD=√(MB²+BD²)=√(25+24)=√49=7cм.
11. Из прямоугольного ΔАВС по т. Пифагора АВ=√(СВ²+СА²)=√(36+64)=10см. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу делит треугольник на подобные треугольники, поэтому АВ/АС=АС/АК АК=АС²/АВ=64/10=6,4см. Используем теорему о трех перпендикулярах⇒ DC⊥ABC, DK⊥АВ, CK⊥AB,
находим СК=√(АС²-АК²)=√(64-40,96)=√23,04=4,8.
DC⊥CK⇒DC=√(DK²-CK²)=√(25-23,04)=√1.96=1,4cм..
К решению прикреплены 2 файла..