1) камень массой 400г падает на землю с высоты 5м. какую работу при этом совершит сила тяжести? 2) какова мощность двигателя подъемника, если из шахты глубиной 400м он поднимает руду массой 3т за мин.?
Пусть длина меньшей стороны x см, тогда длина второй стороны 2x см, а три другие имеют длину (x+20) см. Составим уравнение по условию задачи, периметр будет равен x+2x+3*(x+20) = 200 см.
Пусть длина меньшей стороны x см, тогда длина второй стороны 2x см, а три другие имеют длину (x+20) см. Составим уравнение по условию задачи, периметр будет равен x+2x+3*(x+20) = 200 см.
Решаем уравнение:
x+2x+3*(x+20) = 200
3x+3*(x+20) = 200
3*(x+x+20) = 200,
2x+20 = 200/3,
2x = (200/3) - 20,
x = (1/2)*( (200/3) - 20) = (100/3) - 10 = (100 - 30)/3 = 70/3 = (69+1)/3 =
= 23+(1/3) см. Это длина меньшей стороны,
длина большей стороны = 2x = 2*(23+(1/3)) = 46+(2/3) см,
а длины остальных трех сторон (каждой из них) = x+20 = 20+23+(1/3) =
= 43 + (1/3) см.
Объяснение: №1. Дано: АС=6 м, АВ=2,7 м, А₁В₁=0,9 м. Найти А₁С.
Решение (см рисунок к задаче):
△АA₁В подобен △CС₁A₁ (по двум углам: ∠ ВА₁А – общий, ∠ВАА₁=∠С₁СА₁=90 °)
В подобных треугольниках соответственные стороны пропорциональны, значит:
АA₁/A₁С=АВ/CC₁
Пусть А₁С=х, тогда АА₁=6+х, СС₁=А₁В₁=0,9
(6+х)/x=2,7/0,9
(6+х)/x=3
6+х=3х
2х=6
х=3 (м) длина тени
№2. Дано:ΔС₁О₁Р₁ подобен ΔСОР, СО=2,5, ОP
=2см, α =60°-угол между ними. k=3 Найти SΔС₁О₁Р₁
Решение: В условии видимо ОР=2 см, у вас с ошибкой записано условие, так как СО=ОС, такого быть не может, я так поняла)
Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия. т.е.:
S(ΔС₁О₁Р₁ )/ S( ΔСОР) = k² =3²=9.
Найдём площадь ΔСОР:
S(ΔСОР)=( 1/2) ·CO·OP·Sin60° =( 1/2) ·2,5·2·(√3/2) =2,5√3/2= 1,25·√3
тогда S(ΔС₁О₁Р₁ )= S(ΔСОР) ·k² = 1,25√3 ·9=11,25√3.
ответ: 11,25√3 см²