Пусть внешний угол будет смежен с верхним углом треугольника. По свойству внешнего угла (внешний угол равен сумме двух углов несмежных с ним). Т.к треугольник равнобедренный, то оставшиеся углы при основании равны, значит они равны, как 110/2 = 55 градусов - два угла при основании. Верхний угол тогда равен, 180-110=70 градусов.
Есть второе решение. Пусть внешний угол смежен с углом при основании, тогда 180-110=70 градусов - угол при основании. Соответственно второй угол - тоже равен 70 (который при основании). А третий тогда равен, как 180-(70+70)=180-140=40 градусов.
Рёбра прямой призмы перпендикулярны плоскости основания.
Пусть плоскость m - искомая.
Тогда плоскость а основания является её ортогональной проекцией на плоскость, содержащую основание призмы.
Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью многоугольника и плоскостью проекции.
S (a)=S(m)•cos45°⇒
S(m)=S(a):cos45°
Формула площади параллелограмма
S=a•b•sinα, где а и b стороны параллелограмма, α - угол между ними.
Есть второе решение. Пусть внешний угол смежен с углом при основании, тогда 180-110=70 градусов - угол при основании. Соответственно второй угол - тоже равен 70 (который при основании). А третий тогда равен, как 180-(70+70)=180-140=40 градусов.
ответ: 55,55,70 или 70,70,40
Пусть плоскость m - искомая.
Тогда плоскость а основания является её ортогональной проекцией на плоскость, содержащую основание призмы.
Площадь ортогональной проекции многоугольника на плоскость равна площади проектируемого многоугольника, умноженной на косинус угла между плоскостью многоугольника и плоскостью проекции.
S (a)=S(m)•cos45°⇒
S(m)=S(a):cos45°
Формула площади параллелограмма
S=a•b•sinα, где а и b стороны параллелограмма, α - угол между ними.
S(a)=4•5•sin30°=20•1/2=10 дм²
cos45°=√2/2 или иначе 1/√2
S(m)=10:(1/√2)=10√2 см²