1. Катеты прямоугольного треугольника (∠С = 90 °), равны 5 см и 12 см. Найти sin В, cos В, tg В.
2. Решить прямоугольный треугольник АВС, ∠С = 90 °, если ∠В = 30 °, а гипотенза равна 18 см.
3. Сторона ромба равна 10 см, а одна из его диагоналей равна 16 см. Найти длину второй диагонали.
4.Найти периметр равнобедренного треугольника, боковая сторона которого равна 13 см, а высота, проведенная к основанию, равна 12 см.
5. Диагонль прямоугольника равна 39 см. Найти стороны прямоугольника, если их длины относятся как 12: 5.
1. См. рис.1. Найти отрезок КР. КР = МН – МК – РН.
Т.к. МН – средняя линия трапеции, то МК и РН – средние линии треугольников АВС и ДВС. У этих треугольников общее основание ВС. Следовательно МК = РН = ВС/2 = 8/2 = 4 см. Т.к. МН – средняя линия трапеции , то МН = (АД+ВС)/2 = (16 + 8)/2 = 12 см. Таким образом, КР = 12 -4 -4 = 4 см.
2. См. рис.2. Синие линии нужны для объяснения принципа построения. При построении требуемой прямой их, естественно, не будет.
Внутри угла А поставлена точка М. Через эту точку проведена прямая, пересекающая лучи «а» и «е» в точках С и В соответственно. Если эта линия будет проведена правильно, то в получившемся треугольнике АСВ МА будет медианой, поскольку должно выполниться условие СМ = МВ. Медиана делит площадь треугольника пополам. Т.е. площадь треугольника АВМ должна равняться площади треугольника АМС. Значит, площадь треугольника АВС должна равняться двум площадям треугольника АВМ. Эти треугольники (АВС и АВМ) имеют общее основание АВ. Отсюда следует, что высота РС треугольника АВС должна быть в два раза больше высоты МК треугольника АВМ. Вот это обстоятельство и необходимо использовать при построении. Теперь забыли про синие линии. Их нет.
Из точки М опустим перпендикуляр (МК) на любой из лучей угла, например, на луч «е». Затем проведем прямую параллельно лучу «е» на расстоянии СР = 2МК. Пересечение этой прямой с лучом «а» даст точку С. Проведя прямую через точки М и С построим требуемую линию.
3. См. рис. 3. Требуемое условие будет выполняться, если НК будет параллельна АС. Опять же синяя линия для объяснения принципа. Если НК параллельна АС то треугольники АВД и НВЕ подобны. Так же подобны и треугольники СДВ и КЕВ. Для первой пары подобных треугольников ВД/АД = ВЕ/НЕ. Для второй пары ВД/СД = ВЕ/ЕК. Из этих двух соотношений вытекает, что АД/ДС = НЕ/ЕК. А поскольку АД = ДС, то и НЕ = ЕК. Таким образом, что бы выполнилось требуемое условие НК должен быть параллелен АС.
<bac=x+x=2x,
<paf=<pfa=x,
<apf=180-(<paf+<pfa)=180-2x.
Тогда <bpf=180-<apf=180-(180-2x)=2x.
То есть мы видим, что <bac=<bpf=2х. Это соответственные углы при пересечении двух прямых ac и pf секущей ab. Значит, прямые ас и pf параллельны (признак параллельности двух прямых).
2. Рассмотрим треугольники abc и pbf. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого:
- угол b - общий;
- <bac=<bpf как показано выше.
Для подобных треугольников можно записать отношение сходственных сторон:
pf : ac = bf : bc = 2 : (2+1) = 2 : 3, отсюда
pf = ac*2:3=6*2:3=4 см