1. концы отрезка ав, не пересекает плоскость α, находятся на расстоянии 4 см и 8 см от этой плоскости. на каком расстоянии от плоскостей находится середина отрезка ав? 2. один из концов данного отрезка лежит в плоскости β, а его середина находится на расстоянии 2 см от плоскости. на каком расстоянии от плоскости находится другой конец отрезка? 3. авсdа1в1с1d1 - прямоугольный параллелепипед (рис. 445), ав = 3 см, аd = 4 см, аа1 = 6 см. чему равно расстояние от точки в до прямой dс? 4. авсdа1в1с1d1 - прямоугольный параллелепипед (рис. 445), ав = 3 см, аd = 4 см, вв1 = 6 см. почему равно расстояние между прямыми а1в1 и dd1? 5. авсdа1в1с1d1 - прямоугольный параллелепипед (рис. 445), ав = 6 см, d = 8 см, вв1 = 9 см. чему равно расстояние от точки а1 до плоскости в1bd? 6. каком из предложенных значений не может равняться угол между скрещивающимися прямыми? 7. наклонная ам образует с плоскостью α угол 45° (рис. 436). найти длину наклонной, если длина ее проекции равна 2 см. 8. две плоскости пересекаются под углом 60°. точка а лежит в одной из плоскостей и удалена от второй плоскости на расстояние 6 см. найти расстояние от точки а до линии пересечения плоскостей. 9. ∆авс1 является ортогональной проекцией ∆авс на плоскость α (рис. 444). площадь треугольника авс равна 40 см2, а площадь треугольника авс1 равна 20 см2. найти угол φ между плоскостями авс и α. 10. авсdа1в1с1d1 - куб (рис. 445). найти угол между прямыми аа1 и вс1. 11. через вершину а квадрата авсd со стороной 8 см проведена перпендикуляр ао, длина которого 7 см. найти (в см) расстояние от точки т до прямой вd. 12. через гипотенузу ав прямоугольного треугольника авс проведена плоскость β, которая образует с плоскостью треугольника угол 30°. найти (в см) расстояние от точки с до плоскости β, если ас=6 см, св = 8 см.
1. AB
2. угол B
3. Основание.
4. a, b - катеты, с - гипотенуза.
а < с, b < c
5. КМ
6. 8 см
Объяснение:
1. Найдем угол С = 180 - (58+66) = 56
угол C меньше чем углы А и B.
Так как напротив меньшего угла лежит меньшая сторона, то АB будет меньшей стороной
2. Напротив большего угла большая сторона, значит напротив большей стороны - больший угол.
АС больше чем АВ и АD, напротив АС угол В
3. Тупым углом считается угол, больше чем 90 градусов. В равнобедренном треугольнике углы при основании равны, значит, если мы возьмём за тупой угол угол при основании, то получим что в треугольнике будет два тупых угла, и их сумма будет превышать 180, что невозможно по теореме о сумме углов треугольника. Значит, тупым углом будет угол при вершине. Так как угол при вершине тупой, два оставшихся угла при основании - острые и равны. Острый угол при меньше, чем тупой при вершине, а значит сторона, лежащая напротив угла при вершине, будет являться большей. Сторона, лежащая напротив угла при вершине в равнобедренном треугольнике является основанием, значит основание будет больше, чем боковые стороны.
4. Так как напротив гипотенузы лежит прямой угол в 90°, то по теореме о сумме углов треугольника, сумма двух других углов = 90°, а значит два других угла в любом случае будут меньше чем прямой угол => угол в 90° - самый больший, а значит и гипотенуза, лежащая напротив него, будет больше катетов.
5. Так как гипотенуза всегда больше, чем катет, то КМ будет являться гипотенузой.
Проверим через теорему Пифагора
4²+3² = 5²
16 + 9 = 25
25 = 25, √25 = 5 => 5=5
6. Треугольник равнобедренный, значит у него две равные стороны и основание. Возьмём за основание 16 см, значит, боковая сторона 8 см. По свойству равнобедренного треугольника вторая боковая сторона тоже будет 8 см. Проверим по теореме о сумме сторон(сумма двух сторон не должна быть больше оставшейся стороны)
8+8=16 чм, вторая сторона тоже 16 см, значит, длина третьей стороны - 8 см
Возьмём за боковую сторону 16 см, тогда основание будет 8 см. Точно так же по свойству равнобедренного треугольника получим, что вторая боковая сторона будет 16 см. Проверим по теореме о сумме сторон:
16+16 = 32 см, 32 см > 8 см => такого треугольника не существует.