1. На боковых сторонах AB и СД трапеции Авсд (BC || АД) отмечены точки K и L соответственно, так, что угол BCK= угол ACK и угол CAL= угол ДАL. Оказалось, что прямые KL и АД параллельны. Найдите длину диагонали AC, если известно,
что BC=4 см, АД=9 см.
4
Пусть точка пересечения АВ с прямой из вершины С к прямой АВ будет точка К.
А точка, в которой высота к AC из вершины В пересекает АС будет D.
Рассмотрим треугольник АВD. Так как ВD – это высота в АВС, следовательно, она образует прямой угол с AС, то есть АВD – прямоугольный треугольник. Нам известна длина гипотенузы АВ = 8 и угол при катете АD - 15º.
Найдем AD:
AD = cos15º * 8 = √(2 + √3) / 2 * 8 = 7,73.
Теперь рассмотрим треугольник АКС. КС – это минимальное расстояние от С до АВ, значит КС перпендикулярно АВ.
Треугольник АКС также прямоугольный, с гипотенузой АС и углом против катета КС- 15º.
АС = AD * 2 = 7,73 * 2 = 15,46.
КС = sin15º * 15,46 = √(2 - √3) / 2 * 15,46 = 4.
Дано :
∆АВС — прямоугольный (∠С = 90°).
AD = BD.
АС = 12, CD = 10.
Найти :
S(∆ABC) = ?
Так как D — середина АВ, то CD — медиана ∆АВС (по определению).
В прямоугольном треугольнике медиана, проведённая к гипотенузе, равна её половине.Следовательно, АВ = 2CD = 2*10 = 20.
По теореме Пифагора найдём длину катета СВ :
AB² = AC² + CB²
CB² = AB² - AC² = 20² - 12² = 400 - 144 = 256 => CB = √CB² = √256 = 16.
Площадь прямоугольного треугольника равна половине произведения его катетов.Следовательно, S(∆ABC) = ½*AC*CB = ½*12*16 = 96 (ед²).
96 (ед²).