1. На клетчатом листе нарисована замкнутая ломаная только по сторонам клеток. Сколько вертикальных звеньев имеет ломаная, если у этой ломаной 7 горизонтальных звеньев?
ответ:
2. На клетчатом листе нарисована незамкнутая ломаная только по сторонам клеток. Сколько вертикальных звеньев имеет ломаная, если у этой ломаной 7 горизонтальных звеньев?
ответ:
(Если у заданий получилось несколько ответов, введи их в поле ответов в порядке возрастания через запятую без пробелов.)
Рисуем окружность. Произвольно чертим хорды с учетом на то, что отношение двух дуг = 1:3. Тогда составляем уравнение
60 градусов = (1х+3х)/2
где 1 и 3 - заданные условием задачи части; х - градусная мера 1 части.
Отсюда
х= 60*2/4 = 30 градусов - это градусная мера меньшей дуги АС
30 градусов *3 = 90 градусов - это градусная мера большей дуги ДВ
Проверяем правильность решения:
На дугу в 30 градусов опирается вписанный угол В, который равен = 1/2 дуги АС равной 30 => угол В = 15
На дугу в 90 градусов опирается угол В = 1/2 дуги ДВ равную 90 =>
угол Д = 45
Следовательно сумма углов треугольника АОВ = 45+15+120 =180, где О центр пересечения хорд
Задача решена
ответ: градусная мера дуг, заключенных между сторонами угла 60 градусов равна 30 и 90 градусам.
Соединим центр окружности с вершинами тупого и острого углов.
Получаем прямоугольный треугольник с прямым углом в центре окружности,поскольку сумма углов,прилежащих к боковой стороне,равна 180(острые углы треугольники - углы при биссектрисах острого и тупого углов трапеции).
h треуг=r.(через Т.Пифагора доказывается среднее геом.проекций катетов на гип.)
r=V(25*4)=10.
В трапеции 2r=h,а в прямоуг.трап. ещё и h=меньшая боковая
Следовательно,боковая 2*10=20.
Значит,суммы противоположных 29+20=49.
Окружность касается боковой стороны в серединах,
значит,части 10 и 10.
По св-ву отрезков касательных,получаем,меньшая - 14,
большая - 35
S=(35+14)\2*20=490
ответ:490