1. На клетчатом листе нарисована замкнутая ломаная только по сторонам клеток. Сколько вертикальных звеньев имеет ломаная, если у этой ломаной 10 горизонтальных звеньев?
ответ: ломаная имеет
вертикальных звеньев.
2. На клетчатом листе нарисована незамкнутая ломаная только по сторонам клеток. Сколько вертикальных звеньев имеет ломаная, если у этой ломаной 10 горизонтальных звеньев?
ответ: ломаная имеет
вертикальных звеньев.
опускаем высоту из вершины. получаем прямоугольный треугольник со стороной 10 и 6 (т.к. трапеция равнобедренная 12/2=6). по теореме пифагора находим второй катет, который является так же высотой трапеции. он равен 8.
рассматриваем другой прямоугольный треугольник - где высота это катет, а диагональ - гипотенуза. по теореме пофигора находим там второй катет, который является оставшимся куском основания. он получается 15.
дальше. маленькое основание будет равно (15+6)-12=9
площадь трапеции = полусумма оснований на высоту = (21+9)/2*8=96
Пусть заданы отрезки: АС - сторона треугольника, АК и СМ - его высоты.. Требуется построить треугольник по данным элементам. • 1) На произвольной прямой откладываем отрезок АС, равный данной стороне. • 2) По известному методу деления отрезка пополам находим середину О отрезка АС и из О радиусом, равным АО, чертится окружность. • 3) Из А на построенной окружности отмечаем циркулем точку К ( длина АК равна длине одной из данных высот). Из точки С таким же образом на окружности отмечаем основание М второй высоты. • 4) Из точки А через М проводим прямую, из точки С через К проводим вторую прямую. Точку пересечения этих прямых обозначим В. Треугольник по стороне АС и высотам АК и СМ построен: Длина АС задана условием. Углы АКС и СМА прямые - опираются на АС как на диаметр окружности. Следовательно, АК - высота к ВС, СМ - высота к АВ.