Обозначим наш треугольник точками АВС, в котором угол В = 120°, так как сторона АВ = ВС следовательно угол А = С (свойства равнобедренных треугольников), а поскольку сумма углов треугольника равна 180°, тогда сумма углов А и С равняется 180-120=60, то есть А = С = 30°.
Проводим высоту ВD, которая образует прямоугольный треугольник АВD. Катет ВD лежит против угла 30°, значит равен половине гипотинузы АВ. ВD = 6/2 = 3. По теореме Пифагора находим второй катет АD.
АD = √(36-9)=√27=3√3
Так как в равнобедренном треугольнике высота является и медианой, тогда АС = АD + DС = 3√3 + 3√3 = 6√3
Периметр треугольника - это сумма всех сторон
Р = 6√3 + 6 + 6 = 6√3 + 12
ответ: 6√3 + 12
П.С. я вроде бы все понятно расписал, надеюсь, что рисунок сделаешь сам(а), если нет пиши в комментарии я сфоткаю, отправлю
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ABD = ∠CBD = 90 - 45 = 45°(если треугольник равнобедренный то высота, проведённая из основания к вершине треугольника, является ещё и биссектрисой)
=> ∠АВС - прямой (90°)
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
Объяснение:
Обозначим наш треугольник точками АВС, в котором угол В = 120°, так как сторона АВ = ВС следовательно угол А = С (свойства равнобедренных треугольников), а поскольку сумма углов треугольника равна 180°, тогда сумма углов А и С равняется 180-120=60, то есть А = С = 30°.
Проводим высоту ВD, которая образует прямоугольный треугольник АВD. Катет ВD лежит против угла 30°, значит равен половине гипотинузы АВ. ВD = 6/2 = 3. По теореме Пифагора находим второй катет АD.
АD = √(36-9)=√27=3√3
Так как в равнобедренном треугольнике высота является и медианой, тогда АС = АD + DС = 3√3 + 3√3 = 6√3
Периметр треугольника - это сумма всех сторон
Р = 6√3 + 6 + 6 = 6√3 + 12
ответ: 6√3 + 12
П.С. я вроде бы все понятно расписал, надеюсь, что рисунок сделаешь сам(а), если нет пиши в комментарии я сфоткаю, отправлю
Дано:
∆АВС.
∠А = 45°
BD - высота, медиана.
АС = 5 см.
Найти:
Расстояние от В до АС.
Решение.
∆ABD и ∆CBD - прямоугольные.(так как BD - высота)
Рассмотрим эти треугольники.
AD = DC, по условию
BD - общая сторона.
=> ∆ABD = ∆CBD, по катетам.
=> ∆АВС - равнобедренный.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ABD = ∠CBD = 90 - 45 = 45°(если треугольник равнобедренный то высота, проведённая из основания к вершине треугольника, является ещё и биссектрисой)
=> ∠АВС - прямой (90°)
Медиана, проведённая из прямого угла к гипотенузе равна половине гипотенузы.
=> ВD = 5 ÷ 2 = 2,5 см.
ответ: 2,5 см.