1 На рисунке 1 ВАЕ= 104°, DВF = 76°, АС = 12 см. Найдите сторону
СВ треугольника АВС.
Р и с . 1
2 В треугольнике СDЕ точка М лежит на стороне СЕ, причем СМD
острый. Докажите, что DЕ >DМ.
3 Периметр равнобедренного тупоугольного треугольника равен 45 см, а
одна из его сторон больше другой на 9 см. Найдите стороны треугольника.
Свойства касательных:
Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенных из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Следовательно:
треугольники АВО и АСО прямоугольные и равные
ВО=ОС=R
ВО=АО*Sin(ВАО)
4,5 = 9*Sin(ВАО)
Sin(ВАО) = 1/2, а это синус угла 30*
Следовательно угол ВАО=САО=30*
Угол ВАС - угол между касательными
угол ВАС=угол ВАО+угол САО=60*
ответ: угол между касательными равен 60*
Треугольник АВС - р/б с углом при основании = 60 град. Из вершины треугольника (т.В) проведена высота ВН на основание треугольника АС. Найти высоту ВН, если боковая сторона АВ=ВС=6 см.
Т.к. АВС р/б, то высота проведенная из вершины является и биссектрисой и медианой.
Угол В= 180-60-60=60 см, значит треугольник АВС - равносторонний, тогда угол АВН=СВН=30 град. акже, если АВС - р/с, то АВ=ВС=СА=6см. Тогда, т.к. ВН - медиана, то АН=6/2=3 см. Тогда ВН по т Пиф: ВН=√(6*6-3*3)=√(36-9)=√27=√(9*3)=3√3 см
ответ: ВН=3√3 см.
Рисунок во вложении..................................... ©