1)На рисунке 2.15 угол HKM= углу MNH, KO=ON. Докажите, что угол HKN= углу KNM. 2) Точки М и Е расположены по разные стороны от прямой OP так, что OM = PE и углу MPQ = углу POE. Докажите, что угол MOE = углу EPM и треугольник MPE= треугольнику EOM.
Длина высоты SO правильной треугольной пирамиды SABC=5. угол между ребром и плоскостью основания пирамиды равен 30 градусов. Найдите длину стороны основания АВ пирамиды
Начнем с рисунка, хотя можно и без него обойтись, если помнить, как выглядит такая пирамида. Основание правильной треугольной пирамиды - равносторонний треугольник АВС. Все его стороны равны, все его углы равны 60°. Сторона такого треугольника, выраженная через высоту АН, равна АС=АВ=АН:cos(60°) Нужно для нахождения АС найти АН Рассмотрим рисунок. Высота SO пирамиды с частью АО высоты основания и ребром составляет прямоугольный треугольник, в котором катет SO противолежит углу 30°,⇒ АО=SO:tg30° tg (30°) = (√3)/3 = 1/√3 АО=5:1/√3=5√3 Основание О высоты SO правильной треугольной пирамиды лежит в точке пересечения медиан ( высот, биссектрис правильного треугольника) и находится, как точка пересечения медиан всех треугольников, на расстоянии 2/3 от вершины угла. Следовательно, 2/3 высоты треугольника в основании равно 5√3 Вся высота основания равна АН=( 5√3):2)·3=7,5√3 АВ=АС=АН:cos(60)=(7,5√3)·2:√3=15
Применим при построении свойство параллелограмма: Диагонали параллелограмма точкой пересечения делятся пополам. Чертим произвольную прямую. На ней отмечаем О- точку пересечения диагоналей. При точке О как при вершине откладываем с транспортира данный по условию угол α От О по обе ее стороны откладываем на одной прямой половины одной диагонали. Обозначаем концы отрезков А и С. От О по обе ее стороны откладывае на второй прямой половины другой диагонали. Обозначаем концы отрезков В и D. Соединим последовательно А, В, С, D. ∆ АОВ=∆ COD и ∆ BOC=∆ AOD по двум сторонам и углу между ними. Следовательно, стороны АВ = СD, и BC =AD. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм. Построенный четырехугольник - параллелограмм.
Длина высоты SO правильной треугольной пирамиды SABC=5.
угол между ребром и плоскостью основания пирамиды равен 30 градусов.
Найдите длину стороны основания АВ пирамиды
Начнем с рисунка, хотя можно и без него обойтись, если помнить, как выглядит такая пирамида.
Основание правильной треугольной пирамиды - равносторонний треугольник АВС.
Все его стороны равны, все его углы равны 60°.
Сторона такого треугольника, выраженная через высоту АН, равна
АС=АВ=АН:cos(60°)
Нужно для нахождения АС найти АН
Рассмотрим рисунок. Высота SO пирамиды с частью АО высоты основания и ребром составляет прямоугольный треугольник, в котором катет SO противолежит углу 30°,⇒
АО=SO:tg30°
tg (30°) = (√3)/3 = 1/√3
АО=5:1/√3=5√3
Основание О высоты SO правильной треугольной пирамиды лежит в точке пересечения медиан ( высот, биссектрис правильного треугольника) и находится, как точка пересечения медиан всех треугольников, на расстоянии 2/3 от вершины угла.
Следовательно, 2/3 высоты треугольника в основании равно 5√3
Вся высота основания равна
АН=( 5√3):2)·3=7,5√3
АВ=АС=АН:cos(60)=(7,5√3)·2:√3=15
Диагонали параллелограмма точкой пересечения делятся пополам.
Чертим произвольную прямую.
На ней отмечаем О- точку пересечения диагоналей.
При точке О как при вершине откладываем с транспортира данный по условию угол α
От О по обе ее стороны откладываем на одной прямой половины одной диагонали.
Обозначаем концы отрезков А и С.
От О по обе ее стороны откладывае на второй прямой половины другой диагонали.
Обозначаем концы отрезков В и D.
Соединим последовательно А, В, С, D.
∆ АОВ=∆ COD и ∆ BOC=∆ AOD по двум сторонам и углу между ними.
Следовательно, стороны АВ = СD, и BC =AD.
Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.
Построенный четырехугольник - параллелограмм.