Впрямоугольном треугольнике один острый угол В=30градусам, значит второй острый угол А= 180-(90+30)=60град.
В тр.АМС угол АМС=60гр., но и угол МАС (или угол А тр.АВС)=60гр., третий угол МСА= 180-2*60=60гр.У нас получился равносторонний треугольникАМС. Но в тр.АВС катет, лежащий против угла в 30гр. равен половине гипотенузы, т.е.СА=1/2АВ.
Треугольник СВМ- равнобедренный,т.к. углы при основании равны. Поэтому-стороны ВМ=МС.=1/2АВ. Значит отрезок СМ делит гипотенузу пополам,т.е. является медианой треугольника АВС.
Если многоугольник может быть невыпуклым, и может самопересекаться, то решение следующее:
Так как в единичном квадрате наибольшее расстояние между двумя точками равно sqrt(2), то каждая сторона многоугольника меньше sqrt(2). Периметр квадрата 4, а многоугольника 28. Тогда у него не меньше [28/sqrt(2)]+1=20 сторон.
Такой многоугольник можно получить, если рассмотреть ломаную, каждое звено которой немного меньше диагонали квадрата, и равно 1.4. Двадцатое звено заканчивается там. где начинается первое.
Впрямоугольном треугольнике один острый угол В=30градусам, значит второй острый угол А= 180-(90+30)=60град.
В тр.АМС угол АМС=60гр., но и угол МАС (или угол А тр.АВС)=60гр., третий угол МСА= 180-2*60=60гр.У нас получился равносторонний треугольникАМС. Но в тр.АВС катет, лежащий против угла в 30гр. равен половине гипотенузы, т.е.СА=1/2АВ.
Поэтому в тр.МСА все стороны равны 1/2АВ.
Рассмотрим тр.СВМ.Угол В=30гр., угол ВСМ=90-60=30гр., угол ВМС= 180-30*2=120гр.
Треугольник СВМ- равнобедренный,т.к. углы при основании равны. Поэтому-стороны ВМ=МС.=1/2АВ. Значит отрезок СМ делит гипотенузу пополам,т.е. является медианой треугольника АВС.
Если многоугольник может быть невыпуклым, и может самопересекаться, то решение следующее:
Так как в единичном квадрате наибольшее расстояние между двумя точками равно sqrt(2), то каждая сторона многоугольника меньше sqrt(2). Периметр квадрата 4, а многоугольника 28. Тогда у него не меньше [28/sqrt(2)]+1=20 сторон.
Такой многоугольник можно получить, если рассмотреть ломаную, каждое звено которой немного меньше диагонали квадрата, и равно 1.4. Двадцатое звено заканчивается там. где начинается первое.