1. На рисунке MN || AC. а) Докажите, что AB·BN = СВ·ВМ. б) Найдите MN, если AM = 6 см, BM = 8 см, AС = 21 см. 2. Даны стороны треугольников PQR и ABC: PQ = 16 см, QR = 20 см, PR = 28 см и АВ = 12 см, ВС = 15 см, АС = 21 см. Найдите отношение площадей этих треугольников.
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2) итого
имеем для данного многоульника n(n-3)/2=35 n(n-3)=70
- не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон ответ: 10
Через любые три точки, которые не лежат на одной прямой, можно провести только одну плоскость.(аксиома) Через две пересекающиеся прямые можно провести плоскость, притом только одну (следствие из аксиомы) Прямые а и b пересекаются, следовательно, они лежат в одной плоскости, и эта плоскость пересекает плоскости α и β . Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны. Следовательно, точка пересечения прямой b с плоскостью β будет лежать на прямой, параллельной прямой АD. Проведем прямую параллельно АD. Точка ее пересечения с прямой b будет точкой пересечения b и плоскости β.
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2)
итого
имеем для данного многоульника
n(n-3)/2=35
n(n-3)=70
- не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон
ответ: 10
Через две пересекающиеся прямые можно провести плоскость, притом только одну (следствие из аксиомы)
Прямые а и b пересекаются, следовательно, они лежат в одной плоскости, и эта плоскость пересекает плоскости α и β .
Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
Следовательно, точка пересечения прямой b с плоскостью β будет лежать на прямой, параллельной прямой АD.
Проведем прямую параллельно АD.
Точка ее пересечения с прямой b будет точкой пересечения b и плоскости β.