В равнобедренном треугольнике углы при основании равны.
Пусть x - угол при основании (∠A и ∠C), тогда угол при вершине (∠B) равен 2x. Получим уравнение
x + x + 2x = 180 (сумма углов треугольника равна 180°)
4x = 180
x = 180/4 = 45°
AH = AC/2 = 4/2 = 2 см (расстояние есть высота, а высота в равнобедренном треугольнике, проведенная к основанию, является его медианой, т. е. делит основание на 2 равные части)
Аксиома 1. Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Аксиома 2. Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).Из аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.
Аксиома 3. Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
В таком случае говорят, плоскости пересекаются по прямой.
Пример: пересечение двух смежных стен, стены и потолка комнаты.
Пусть x - угол при основании (∠A и ∠C), тогда угол при вершине (∠B) равен 2x. Получим уравнение
x + x + 2x = 180 (сумма углов треугольника равна 180°)
4x = 180
x = 180/4 = 45°
AH = AC/2 = 4/2 = 2 см (расстояние есть высота, а высота в равнобедренном треугольнике, проведенная к основанию, является его медианой, т. е. делит основание на 2 равные части)
Рассмотрим ΔABH: ∠H = 90°, ∠A = 45°
∠B = 90 - 45 = 45° (сумма острых углов прямоугольного треугольника равна 90°) ==> ΔABH - равнобедренный ==> AH = BH = 2 см
BH есть расстояние от вершины равнобедренного треугольника до основания.
ответ: BH = 2 см
Аксиома 1.
Через любые три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.
Аксиома 2.
Если две точки прямой лежат в плоскости, то все точки прямой лежат в этой плоскости. (Прямая лежит на плоскости или плоскость проходит через прямую).Из аксиомы 2 следует, что если прямая не лежит в данной плоскости, то она имеет с ней не более одной общей точки. Если прямая и плоскость имеют одну общую точку, то говорят, что они пересекаются.
Аксиома 3.
Если две различные плоскости имеют общую точку, то они имеют общую прямую, на которой лежат все общие точки этих плоскостей.
В таком случае говорят, плоскости пересекаются по прямой.
Пример: пересечение двух смежных стен, стены и потолка комнаты.