1.Начертите две окружности разных радиусов, чтобы они касались в одной точке. Отметь отрезком расстояние между их центрами.
2.Начертите две окружности разных радиусов, чтобы они пересекались в двух точках. Отметь отрезком расстояние между их центрами.
3.Начертите две окружности разных радиусов, чтобы они не касались. Отметь отрезком расстояние между их центрами.
1) угол АОВ = 180 - 60 =120 градусов
2) Проведём биссектрису СК. Она пройджёт через точку О и будет одновременно медианой
то есть АК =6/2=3см и высотой, то есть угол АКО =90 градусов и угол АОК = 120/2 =60 градусов
3) Из тр-ка АКО имеем АО = АК/ sin60 = 3 : ( √3/2) = 2√3
4) По свойству медиан АА1 = 1,5АО =1,5 *2√3 =3√3
ответ АА1 =3√3
2)пусть одна сторона-х, тогда другая- 13-х, по теореме косинусов сост. уравнение:
x^2+(13-x)^2-2*x*(13-x)*cos60=49
x^2+169-26x+x^2-13x+x^2=49
3x^2-39x+120=0
x^2-13x+40=0
D=169-160=9 x1=(13+3)\2=8 x2=(13-3)\2=5
х=8-одна боковая сторона, 13-8=5-другая или наоборот х=5, 13-5=8.
Проведем КМ||ВС. КМ=ВС=АД КМ делит параллелограмм пополам. Проведем АМ||КС. КСМА - параллелограмм ( по равенству противоположных и параллельных сторон).
АМ=КС. Но КС=КD следовательно, АМ=КD.
В параллелограмме КАDМ диагонали равны. Равенство диагоналей - признак прямоугольника.
Т.к. КМ разделила параллелограмм пополам, то углы КАD и МDА - прямые, следовательно, и углы КВС и ВСМ - прямые.⇒
АВСD- прямоугольник.