1.начертите равносторонний треугольник abc.постройте фигуру, симметричную ему относительно точки a.укажите параллельные прямые и обоснуйте их параллельность. 2.начертите ромб abcd и постройте симметричный ему относительно прямой ac. 3.начертите квадрат abcd, где o - точка пересечения диагоналей. выполните поворот этого квадрата на 45 градусов против часовой стрелки вокруг точки o. . заранее !
AB=CD=6 см, BC=AD=10 см (протвоположные стороны параллелограмма равны)
если точка H лежит на стороне AD, K на CD (рисунок)
Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону
S=AD*BK=CD*BH
Отсюда BH=AD*BK/CD
BH=10*8/6=40/3 см=13 1/3 cм
если точка K лежит на стороне AD, H на CD (рисунок аналогичный только точки Н и К поменять местами)
Площадь параллелограмма равна произвеедению его стороны на высоту, опущенную на эту сторону
S=AD*BH=CD*BK
Отсюда BH=CD*BK/AD
BH=6*8/10=4.8 см
Плоскости DA1 B1 и MKP параллельны по условию твоей задачи, если эти плоскости параллельны, то они пересекают плоскость ADD1 по параллельным прямым MК и DA1 и есть плоскость CBB1 по параллельным прямым ЕР и CB1.
MKРЕ -как раз и искомое сечение. КМ- гипотенуза равнобедренного прямоугольного треугольника с катетом а/2, КМ=а√2 /2. КР=а.
Тогда периметр Р=2*(а√2 /2+а)=а√2+2а=а(√2+2).
Я думаю, числовые значения из твой задачи можно подставить самостоятельно :в