1)Нарисуй равнобедренный прямоугольный треугольник ABC и выполни поворот треугольника вокруг вершины прямого угла A на угол −270°.
Определи периметр фигуры, которая образовалась из обоих треугольников, если длина катета данного треугольника равна 4 см.
(Промежуточные вычисления и ответ округли до сотых!)
ответ: Pфигуры= см.
2)Дан равносторонний треугольник DFC
Найди центр и угол поворота, чтобы при выполнении этого поворота:
1) вершина D перешла в вершину C;
2) вершина C перешла в вершину F;
3) вершина F перешла в вершину D.
Иными словами: треугольник отобразился в себя.
Угол поворота: ___ градусов.
A)Центр поворота:
б)центр окружности, описанной около треугольника
в)одна (любая) из вершин
г)точка пересечения медиан
д)серединная точка одной (любой) из сторон
е)центр окружности, вписанной в треугольник
3)В системе координат дана точка с координатами P(12;12). Определи координаты точки P1, которая получена после выполнения поворота точки P вокруг начальной точки координат на угол 90°.
ответ: P1(_):(_)
Если теперь вспомнить (именно в этот момент :) ), что точка M - центр окружности, описанной вокруг ABC, то есть MB = MC = MA; то это значит, что точка P тоже лежит на описанной окружности.
Получается, что ∠ACP и ∠ABP оба вписанные в окружность, описанную вокруг треугольника ABC и опираются на дугу AP этой окружности. Поэтому они равны. Очевидно, что ∠ABP равен половине ∠ABC; поэтому
ответ ∠ACP = 32,5°
Радиус r вписанной в прямоугольный треугольник определяется по формуле : r =(a+b-c)/2 =(3+4 -√(3²+4²))/2 =(3+4-5)/2 =1.
S =π*r₁² ⇒ r₁ =√(S/π)=√(25/8π) =√((25/4)/2π) = √6,25/√(2π) < 1 = r.
значит можно.
2. Не может.
k₁ , 2k₁ ; k₂ , 2k₂ ; k₃ , 2k₃ .
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 1 : 2 ⇒BE = k₂ , EC = 2k₂ ; BC=3k₂.
CF : FA = 1 : 2 ⇒CF = k₃ , FA = 2k₃ ; AC =3k₃.
DB =BE ⇒k₂ =2k₁ ;
EC =CF ⇒k₃ =2k₂ =4k₁ .
AB =3k₁; BC =3k₂ =6k₁ ; AC =3k₃=3*4k₁ =12k₁
⇒ AB+BC< AC ,что невозможно.
Если :
AD : DB = 1 : 2 ⇒AD = k₁ , DB = 2k₁ ; AB =3k₁.
BE : EC = 2 : 1 ⇒BE = 2k₂ , EC = k₂ ; BC=3k₂.
DB =BE ⇒2k₁=2k₂ ⇒AB =BC тогда точка касания F середина AC.