1-найдите площадь круга, вписанного в квадрат, со стороной равной a. 2-найдите длину окружности, описанной около прямоугольника со сторонами 12 см и 5 см
Вообще это надо начертить чтобы понять. В общем так как сечения перпендикулярны значит их радиусы перпендикулярны. в то же время перпендикулярны отрезок опущенный из центра шара в центр каждого сечения. Там образуется прямоугольник большая диагональ которого -это радиус шара из ег центра к точке на сфере, одна сторона -это Rпервого сечения, другая R второго сечения. площадь круга равна S=πr² площади сечений известны можем найти их радиусы R1=√11 R2=√14 Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5 V=4πR³ш/3=4π*125/3=прибл 523 S=4πR²ш=4*π*25=приблизительно 314
Биссектриса "разрезает" треугольник на два. Условно назвав их "левый" и "правый", легко видеть что в подобных треугольниках "сходственные" биссектрисы порождают две пары подобных треугольников. "Левый" из разрезанных подобен "левому", а "правый" - "правому". В самом деле, например, у "левых" треугольников есть по равному углу, оставшемуся от исходного, и равны углы, одной из сторон которых являются биссектрисы. То есть подобие по признаку равенства двух углов.
Кроме того, у "левых" треугольников одной из сторон является сторона исходного треугольника, а другой - биссектриса. Что автоматически означает их пропорциональность, то есть биссектрисы относятся так же как боковые стороны (и не важно, какая пара "сходственных" сторон - вполне достаточно показать для любой, раз они все пропорциональны с коэффициентом подобия).
площади сечений известны можем найти их радиусы R1=√11 R2=√14
Теперь найдем радиус шара из указанного выше прямоугольника(начерти, все увидишь) Rш=√(R1²+R2²)=√(11+14)=5
V=4πR³ш/3=4π*125/3=прибл 523
S=4πR²ш=4*π*25=приблизительно 314
Биссектриса "разрезает" треугольник на два. Условно назвав их "левый" и "правый", легко видеть что в подобных треугольниках "сходственные" биссектрисы порождают две пары подобных треугольников. "Левый" из разрезанных подобен "левому", а "правый" - "правому". В самом деле, например, у "левых" треугольников есть по равному углу, оставшемуся от исходного, и равны углы, одной из сторон которых являются биссектрисы. То есть подобие по признаку равенства двух углов.
Кроме того, у "левых" треугольников одной из сторон является сторона исходного треугольника, а другой - биссектриса. Что автоматически означает их пропорциональность, то есть биссектрисы относятся так же как боковые стороны (и не важно, какая пара "сходственных" сторон - вполне достаточно показать для любой, раз они все пропорциональны с коэффициентом подобия).
Это все.