1)Найдите скалярное произведение векторов a̅(3; -2), b̅(-4;1). 2)Вычислите скалярное произведение векторов АВ и CD, если А(-4; 3), В(4,-1), С(5;0), D(-3;1) Решить с формулами и пояснение
Проведем диагонали АС и ВD.Точку пересечения обозначим Е. В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный. Первый признак подобия треугольников: Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒ ∆ АВЕ ≈ ∆ СDЕ, ⇒ АЕ пропорциональна DE, ВЕ пропорциональна ЕС. В треугольниках ADE и ВСЕ: АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные. Второй признак подобия треугольников Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA ----- [email protected]
Как я поняла: так как треугольник abc равнобедренный,то можем найти градусные меры углов,из условия следует что угол В в четыре раза меньше угла С,то есть обозначаем угол В за икс,а угол С в четыре раза больше то есть 4Х. составляем уравнение: 4х+4х+х=180 9х=180 х=20.отсюда следует что угол С=80 Найдём внешний угол при вершине Р. Так как этот угол образован пересечением биссектрис,то образуется равнобедренный треугольник АРС. Так как это биссектрисы,то угол РАС=РСА =80/2=40 .сумма углов треугольника равна 180 следовательно угол Р в треугольнике АРС=180-2*40=100,нам нужен внешний угол следовательно(т.к сумма смежных углов равна 180) 180-100=80 градусов ответ:внешний угол при вершине Р =80 градусам.
В треугольниках АВЕ и СDЕ имеется по два равных угла: один - по условию, второй - вертикальный.
Первый признак подобия треугольников:
Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.⇒
∆ АВЕ ≈ ∆ СDЕ, ⇒
АЕ пропорциональна DE, ВЕ пропорциональна ЕС.
В треугольниках ADE и ВСЕ:
АЕ пропорциональна DЕ, ВЕ- пропорциональна СЕ, углы АЕD и BEC равны, как вертикальные.
Второй признак подобия треугольников
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
Треугольники ADE и ВСЕ подобны и углы, противолежащие пропорциональным сторонам, равны. ⇒∠ВDA=∠BCA
-----
[email protected]
так как треугольник abc равнобедренный,то можем найти градусные меры углов,из условия следует что угол В в четыре раза меньше угла С,то есть обозначаем угол В за икс,а угол С в четыре раза больше то есть 4Х. составляем уравнение:
4х+4х+х=180
9х=180
х=20.отсюда следует что угол С=80
Найдём внешний угол при вершине Р. Так как этот угол образован пересечением биссектрис,то образуется равнобедренный треугольник АРС. Так как это биссектрисы,то угол РАС=РСА =80/2=40 .сумма углов треугольника равна 180 следовательно угол Р в треугольнике АРС=180-2*40=100,нам нужен внешний угол следовательно(т.к сумма смежных углов равна 180) 180-100=80 градусов
ответ:внешний угол при вершине Р =80 градусам.