1. Найдите смежные углы, если один из них в 2,5 раза
меньше прямого.
2. Один из смежных углов на 32° больше другого. Най-
дите эти углы.
3. Сумма вертикальных углов равна 146°. Найдите эти
углы.
4. Найдите неразвернутые углы, образованные при пе-
ресечении двух прямых, если сумма трех из них рав-
на 202°.
Перечертите в тетрадь и реши
2. На рис. 52 21 = 422. Найдите 21, 22.
Рис. 52
Проведем две высоты: АМ и BN. Обозначим каждую высоту за х.
Сторону NC обозначим за у.
Тогда DM=44-16-y=28-y.
По Пифагору:
•треугольник AMD:
х^2=17^2-(28-у)^2
х^2=289-784+56у-у^2
x^2=56y-y^2-495
•треугольник BCN:
х^2=25^2-у^2
х^2=625-у^2
Приравниваем:
56у-у^2-495=625-у^2
56у=1120
у=20.
Подстваляем в любое уравнение:
х^2=625-20^2
х^2=225
х=15.
ответ: высота трапеции - 15.
2. Трапеция ABCD.
Угол ADC=30 градусов.
AD=BC=x - боковая сторона.
Проводим высоту АМ. Обозначаем еe за h.
S=(AB+DC)*h/2.
По свойству(если в четырехугольник вписана окружность, то сумма двух его параллельных сторон равна сумме двум другим параллельным сторонам) определяем, что AB+DC=AD+BC=2x.
S=2x*h/2=x*h=32.
Находим высоту:
Так как она лежит напротив угла в 30 градусов, то по Пифагору она равна половине гипотенузы, т.е. h=x/2.
Подставляем в формулу:
S=x*x/2=32
х^2=64
х=8.
ответ: боковая сторона равнобокой трапеции - 8.
2)Углы КВС и АВС-смежные, их сумма 180,а сумма их половин 90,доказано ещё одно известное свойство: Биссектрисы смежных углов образуют прямой угол. Аналогично угол MCN-прямой .
3) Итак BNCM-прямоугольник, его диагонали равны, то есть МN=ВС=АD. ответ .AD=8