1. Найдите углы: 1) один из углов, возникающих при пересечении двух прямых, меньше другого. Найдите эти углы.[2] 2) один из углов, возникающих при пересечении двух прямых, в 4 раза больше другого. Найдите эти углы.[2]
Для этого надо найти длины сторон по координатам вершин: A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004. ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6. АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004. Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна: ha = 2√(p(p-a)(p-b)(p-c)) / a. a b c p 2p S 8.5440037 6 8.5440037 11.544004 23.08800749 24 ha hb hc 5.61798 8 5.61798
A(-6;1), B(2;4), C(2;-2) АВ = √(2+6)² + (4-1)²) = √(64 + 9) = √73 = 8.544004.
ВС = √(2-2)² + (-2-4)²) = √(0² + 6²) = √36 = 6.
АС = √(2+6)² + (-2-1)² = √(64 + 9) = √73 = 8.544004.
Так как стороны АВ и АС равны, то доказано, что треугольник равнобедренный. Высота, опущенная на сторону а, равна:
ha = 2√(p(p-a)(p-b)(p-c)) / a.
a b c p 2p S
8.5440037 6 8.5440037 11.544004 23.08800749 24
ha hb hc
5.61798 8 5.61798
Рассмотрим ∆АВD.
P – середина АВ по условию;
Т – середина АD по условию;
Следовательно РТ – средняя линия ∆ABD. Средняя линия треугольника вдвое меньше стороны треугольника, которой она параллельна.
PT//BD так как средняя линия параллельна одной из сторон треугольника.
Тогда РТ=0,5*BD=0,5*8=4 см
Рассмотрим ∆BCD.
Q – середина СВ по условию;
R – середина CD по условию;
Следовательно QR – средняя линия ∆BCD. Средняя линия равна половине стороны, которой она параллельна.
QR//BD так как средняя линия параллельна одной из сторон треугольника.
Тогда QR=0,5*BD=0,5*8=4 см.
PT//BD и QR//BD => РТ//QR.
РТ=4 см; QR=4 см => РТ=QR.
Тогда получим что, две противоположные стороны четырехугольника PQRT параллельны и равны, следовательно четырехугольник PQRT – параллелограмм.
Рассмотрим ∆PBQ u ∆ABC.
Угол АВС – общий;
Так как точка Р – середина АВ, то РВ равна половине АВ
Следовательно РВ/АВ=1/2;
Так как точка Q – середина СВ, то QB равно половине СВ
Тогда QB/CB=1/2;
Исходя из найденного, ∆PBQ~∆ABC по двум пропорциональным сторонам и углу между ними, а коэффициент подобия треугольников 1/2.
Следовательно PQ/AC=1/2;
2/AC=1/2;
AC=2*2
AC=4 см.
ответ: Параллелограмм; РТ=4 см; АС=4 см.