1. Найдите углы параллелограмма, если один из них на 46° больше другого.
2. Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке K. Меньшее основание BC равно 4 см, AB = 6 см, BK = 3 см. Найдите большее основание трапеции.
3. Высота BD треугольника ABC делит его сторону AC на отрезки AD и CD. Найдите сторону BC, если AB = 46 см, CD = 3 см, ∠ABD = 30°.
4. Основания равнобокой трапеции равны 10 см и 20 см, а диагональ является биссектрисой её тупого угла. Вычислите площадь трапеции.
5. Из точки B окружности опущен перпендикуляр BM на её диаметр AC, AB = 4 см. Найдите радиус окружности, если отрезок AM на 4 см меньше отрезка CM.
12
Объяснение:
Диагональ прямоугольника образует два равных прямоугольных треугольников является гипотенузой. Угол, который образуется шириной(катетом) и диагональю(гипотенузой) равен 60°. Значит другой острый угол равен 30°. Катет лежащий против угла 30° равен половине гипотенузе. Ширина прямоугольника и является катетом, который лежит против угла 30°.
Катет(ширина)=8√3/2=4√3.
ДЛина прямоугольника будет являться катетом прямоугольного треугольника. Мы можем его найти по теореме Пифагора.
Катет(ширина) обозначим а, гипотенуза(диагональ) обозначим с, катет(длина) обозначим б.
Найдём его по теореме Пифагора:
б^2=с^2-а^2
б^2=(8√3)^2-(4√3)^2=192-48=144
б=√144=12
Длина больше ширины а прямоугольнике. Если корень в квадрате, то корень убирается.
...........
Объяснение:
Мы видим прямоугольный треугольник, так как два катета образуют прямой угол. Нам дан радиус, который находится вписанной окружности в квадрат.
Найдём радиус вписанной окружности в квадрат:
R=a/2. а это сторона квадрата.
R=6/2=3.
Гипотенуза данного прямоугольного треугольника будет и являться апофермой. Радиус это катет, также нам дан второй катет, который является высотой. Высоту обозначим а, радиус обозначим б, и гипотенуза с. Найдём гипотенузу, то есть апоферму по теореме Пифагора:
с^2=а^2+б^2
с^2=4^2+3^2=16+9=25
с=√25=5
Значит апоферма равна 5.
Думаю рисунок будет понятен. Буквы подставляйте сами.
Также хочу добавить что сторона квадрата является основанием пирамиды.