Из точки к плоскости проведены две наклонных. Длина одной из них равна 4√5, а длина ее проекции - 8 см. Угол между проекциями наклонных равен 60 градусов, а длина отрезка, соединяющего основания наклонных равна 7 см. Найдите длину второй наклонной. ----------------------------------- Сделаем рисунок. На плоскости получился треугольник. Обозначим его вершины АВС. Точку, удаленную от плоскости и в которой соединяются наклонные, обозначим К. Для того, чтобы найти наклонную КС, нужно знать КВ и ВС, которые являются катетами прямоугольного треугольника КВС ( КВ перпендикулярна к плоскости и проекциям наклонных). КВ=√(АК²-АВ²)=√(80-64)=4 см В треугольнике АВС проведем высоту АН Угол АВН=30 градусов. ВН как катет прямоугольного треугольника АВН, противолежащий углу АВН, равен АВ:2=4см = АВ*cos60=8√3):2=4√3 Из треугольника АНС найдем НС НС(АС²-АН²)=√(49-48)=1см ВС=ВН+НС=5см Из прямоугольного треугольника КВС найдем нужную длину наклонной КС. КС=√(КВ²+ВС²)=√(16+25)=√41
Строим сечение. Соединяем точку В с точкой К (серединой SC)
Проводим КМ || AB, Соединяем точку М с точкой А
Сечение ВКМА- трапеция.
КМ- средняя линия треугольника SCD и КМ=1/2 CD=1/2
В треугольнике BSC SK- медиана, но так как треугольник равносторонний, то и высота. По теореме Пифагора BK²=BC²-KC²=1-(1/2)²=3/4.
BK=√3/2.
Находим площадь равнобедренной трапеции : МК=1/2, АВ=1, ВК=МА=√3/2 ( см рисунок 2)
Проводим высоты КН и МР. ВН=РА=1/4
По теореме Пифагора
КН²=ВК²-ВН²=(√3/2)²-(1/4)²=3/4-1/16=12/16-1/16=11/16
КН=√11/4
S(сечения)=(АВ+КМ)КН/2=1/2 ·(1+1/2)√11/4=3√11/16
Объяснение:
-----------------------------------
Сделаем рисунок.
На плоскости получился треугольник.
Обозначим его вершины АВС.
Точку, удаленную от плоскости и в которой соединяются наклонные,
обозначим К.
Для того, чтобы найти наклонную КС, нужно знать КВ и ВС, которые являются катетами прямоугольного треугольника КВС ( КВ перпендикулярна к плоскости и проекциям наклонных).
КВ=√(АК²-АВ²)=√(80-64)=4 см
В треугольнике АВС проведем высоту АН
Угол АВН=30 градусов.
ВН как катет прямоугольного треугольника АВН, противолежащий углу АВН, равен АВ:2=4см
= АВ*cos60=8√3):2=4√3
Из треугольника АНС найдем НС
НС(АС²-АН²)=√(49-48)=1см
ВС=ВН+НС=5см
Из прямоугольного треугольника КВС найдем нужную длину наклонной КС.
КС=√(КВ²+ВС²)=√(16+25)=√41