1. Найти AB 2. В треугольнике ABC точка M лежит на стороне AC, причём угл BMC - острый. Докажите, что AB > BM 3. Периметр равнобедренного треугольника равен 34 см, а боковая в 2 см больше основания. Найдите стороны треугольника. РЕШИТЕ КОНТРОЛЬНУЮ РАБОТУ
1)прямым может быть только угол при вершине, т.к. углы при основании равны, но два прямых угла в треугольнике быть не может.
2)внешний угол при основании не может быть тупым -ошибочка, т.к. равные углы при основании могут быть только острые, значит, внешние только тупые. А можно и так- внешний угол равен сумме двух внутренних, с ним не смежных. Т.к. один угол при вершине заведомо прямой, то сумма прямого и острого дает тупой угол.
3)внешний угол при вершине может быть только острым-опять мимо. Пояснение найдете в п. 2)
4)любой из углов может быть прямым - нет. объяснение в п. 1)
Объяснение:
Соединим А и В, С и D. Четырехугольник ABCD - вписанный, значит <ABC+<ADC=180° и <CDM+<ADC=180°, значит <ABC=<CDM. Аналогично <BAD=<DCM.
Из тр-ка △CMD <CMD(AMB)=180-<CDM-<DCM=180-<ABC-<BAD
<ABC=1/2*(AD+CD); <BAD=1/2(BC+CD).
<AMB=180-1/2*(AD+CD)-1/2*(BC+CD)=180-1/2*(AD+CD+BC)-1/2*CD
Для дуг окружности можно записать:
AD+CD+BC=360-AB - подставим в последнее выражение:
<AMB=180-1/2*(360-АВ)-1/2*СD=180-180+1/2*АВ-1/2*СD=1/2*(AB-CD)=1/2*(ALB-CKD)
1)прямым может быть только угол при вершине, т.к. углы при основании равны, но два прямых угла в треугольнике быть не может.
2)внешний угол при основании не может быть тупым -ошибочка, т.к. равные углы при основании могут быть только острые, значит, внешние только тупые. А можно и так- внешний угол равен сумме двух внутренних, с ним не смежных. Т.к. один угол при вершине заведомо прямой, то сумма прямого и острого дает тупой угол.
3)внешний угол при вершине может быть только острым-опять мимо. Пояснение найдете в п. 2)
4)любой из углов может быть прямым - нет. объяснение в п. 1)