1.Найти диагональ прямоугольного параллелепипеда, если его измерения равны 4, 3, 12
2.Вычислить объем правильной треугольной призмы со стороной основания 6 см и
высотой 5 см.
3.В прямоугольном параллелепипеде стороны основания равны 6 см и 8 см. Диагональ
параллелепипеда образует с плоскостью основания угол 45°. Найдите площадь боковой
и полной поверхности параллелепипеда.
4.Основанием прямой призмы является ромб, сторона которого 13см, а одна из
диагоналей основания 24см. Найти объем призмы, если диагональ боковой грани равна 14 см
а) пусть угол 1=35°
на прикреплённом фото все углы обозначены
1=4 как вертикальные, 4=5 как накрест лежащие при а||b и секущей с, 5=8 как вертикальные => 1=4=5=8=35°
угол 1 и угол 2 смежные => 1+2=180° => угол 2=180-1=145°
угол 4 и угол 6 односторонние при а||b и секущей с => 4+6=180 => 6=180-35=145°
угол 2=6 как соответственные при а||b и секущей с (второй вариант доказательства того, что угол 2=6), 6=3 как накрест лежащие при а||b и секущей с угол 3=7 как соответственные или угол 6=7 как вертикальные =>
2=3=6=7=145°
б) угол 2 на 50° больше угла 1
1 и 2 смежные, => 1+2=180, угол 1=х, угол 2=х+50
х+х+50=180
2х=130
х=65°
=> угол 1=65°, угол 2=65+50=115°
из п. а берем что 1=4=5=8=> 4=5=8=65°
2=3=6=7 => 3=6=7=115°
высоту этой фигуры можно найти из прямоугольного треугольника, образованного длинной диагональю основания, большей диагональю параллелепипеда и высотой.
длинную диагональ основания можно найти по теореме косинусов. знаем длину двух сторон треугольника, образованного сторонами основания, а угол между ними равен
180-60=120°
квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a2 = 32 + 52 - 2bc·cos(120)
a²=34-30·(-0,5)=49
a=7
теперь очередь дошла до высоты параллелограмма.
h²=25²-7²=574
h=24 cм