1. Найти сумму углов выпуклого 22-угольника.
2. Одна из высот параллелограмма равна 12 см. Найдите сторону параллелограмма, к которой проведена эта высота, если его площадь равна 228 см2.
3. Основание равнобедренного треугольника равно 20 см, а боковая сторона — 26 см. Найдите площадь треугольника.
S=a^2sinα=16*(2)^(1/2)/2=11,31. Меньшая диагональ призмы, проекция которой есть меньшая диагональ ромба d, и высота призмы H образуют прямоугольный треугольник, в котором H^2+d^2=D^2. Здесь D-диагональ призмы, наклоненная под углом 60 градусов. Поскольку d лежит в последнем треугольнике против угла 30 градусов, d=D/2, D=2d, D^2=4d^2.
H^2=D^2 - d^2=4d^2 - d^2=3d^2,
H=1,73d.
Рассматривая треугольник, составляющий четвертую часть ромба в основании запишем: sin(45/2)=(d/2)/4,откуда d=8sin22,5=8*0,3827=3,06.Окончательно V=11,31*1,73*3,06=59,9.
S=a^2sinα=16*(2)^(1/2)/2=11,31. Меньшая диагональ призмы, проекция которой есть меньшая диагональ ромба d, и высота призмы H образуют прямоугольный треугольник, в котором H^2+d^2=D^2. Здесь D-диагональ призмы, наклоненная под углом 60 градусов. Поскольку d лежит в последнем треугольнике против угла 30 градусов, d=D/2, D=2d, D^2=4d^2.
H^2=D^2 - d^2=4d^2 - d^2=3d^2,
H=1,73d.
Рассматривая треугольник, составляющий четвертую часть ромба в основании запишем: sin(45/2)=(d/2)/4,откуда d=8sin22,5=8*0,3827=3,06.Окончательно V=11,31*1,73*3,06=59,9.