1. не приводя к каноническому виду найти асимптотические направления линии x2+y2+xy+x+y = 0.
2. не приводя к каноническому виду написать уравнение касательной к кривой x2+y2+xy+x+y = 0, проходящей через выбранную на ней точку.
3. не приводя к каноническому виду написать уравнение диаметра линии x2+y2+xy+x+y = 0, проходящего через начало координат.
нудно подробное решение
Но раз уж от Вас требуют еще какого-то доказательства, то можно и так:
Пусть есть тр-ки АВС и А1 В1 С1 равны.
Покажем, например, что биссектриса АН = биссектрисе А1 Н1.
Для этого заметим, что треугольники АНВ и А1 Н1 В1 равны по ВТОРОМУ признаку равенства треугольников ( по стороне и двум прилегающим углам).
Так же и про остальные биссектрисы.
ответ: S=π•[(ab/(a+b)]²
Объяснение: Обозначим трапецию АВСD, ВС||AD, СВА=ВАD=90°. ВС=а, AD=b.
Формула площади трапеции
Ѕ=0,5•(а+b)•h
Высота трапеции равна диаметру вписанной окружности=2r ⇒
S=(a+b)•2r/2 ⇒
r=S/(a+b)
Если в прямоугольную трапецию вписана окружность, площадь трапеции равна произведению ее оснований. S=ab
ab=(a+b)•r ⇒ r=ab/(a+b)
S(круга)=πr²
S=π•[(ab/(a+b)]²
* * *
Несложно доказать, что в такой трапеции S=ab, если соединить вершины С и D с центром окружности и выразить r=высоту прямоугольного ∆ СОD из произведения отрезков касательных, но это уже другая задача.
* * *
Задачу можно решить и другим
Если в четырехугольник вписана окружность. суммы длин его противоположных сторон равны.
Тогда АВ+CD=a+b. В прямоугольном треугольнике СНD по т.Пифагора СН²=СD²-DH²
CH=2r, HD=AD-BC=b-a, а CD=a+b-2r. Найденный радиус также будет ав/(а+в)